Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 49(24): 14663-71, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26561964

RESUMO

The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective.


Assuntos
Aerossóis/química , Material Particulado/química , Energia Renovável , Aerossóis/análise , Biomassa , Carbono/química , Temperatura Alta , Luz , Material Particulado/análise , Processos Fotoquímicos , Fuligem/análise
2.
Environ Sci Technol ; 48(12): 7143-50, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24866381

RESUMO

Time-resolved emissions of particulate polycyclic aromatic hydrocarbons (PAHs) and total organic particulate matter (OA) from a wood log stove and an adjusted pellet stove were investigated with high-resolution time-of-flight aerosol mass spectrometry (AMS). The highest OA emissions were found during the addition of log wood on glowing embers, that is, slow burning pyrolysis conditions. These emissions contained about 1% PAHs (of OA). The highest PAH emissions were found during fast burning under hot air starved combustion conditions, in both stoves. In the latter case, PAHs contributed up to 40% of OA, likely due to thermal degradation of other condensable species. The distribution of PAHs was also shifted toward larger molecules in these emissions. AMS signals attributed to PAHs were found at molecular weights up to 600 Da. The vacuum aerodynamic size distribution was found to be bimodal with a smaller mode (Dva ∼ 200 nm) dominating under hot air starved combustion and a larger sized mode dominating under slow burning pyrolysis (Dva ∼ 600 nm). Simultaneous reduction of PAHs, OA and total particulate matter from residential biomass combustion may prove to be a challenge for environmental legislation efforts as these classes of emissions are elevated at different combustion conditions.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Temperatura Alta , Espectrometria de Massas/métodos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Carbono/análise , Culinária , Gases/análise , Compostos Orgânicos/análise , Tamanho da Partícula , Material Particulado/química , Hidrocarbonetos Policíclicos Aromáticos/química , Fatores de Tempo , Madeira/química
4.
Eur Respir J ; 27(2): 359-65, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16452593

RESUMO

Pulmonary cells exposed to diesel exhaust (DE) particles in vitro respond in a hierarchical fashion with protective antioxidant responses predominating at low doses and inflammation and injury only occurring at higher concentrations. In the present study, the authors examined whether similar responses occurred in vivo, specifically whether antioxidants were upregulated following a low-dose DE challenge and investigated how these responses related to the development of airway inflammation at different levels of the respiratory tract where particle dose varies markedly. A total of 15 volunteers were exposed to DE (100 microg x m(-3) airborne particulate matter with a diameter of <10 microm for 2 h) and air in a double-blinded, randomised fashion. At 18 h post-exposure, bronchoscopy was performed with lavage and mucosal biopsies taken to assess airway redox and inflammatory status. Following DE exposure, the current authors observed an increase in bronchial mucosa neutrophil and mast cell numbers, as well as increased neutrophil numbers, interleukin-8 and myeloperoxidase concentrations in bronchial lavage. No inflammatory responses were seen in the alveolar compartment, but both reduced glutathione and urate concentrations were increased following diesel exposure. In conclusion, the lung inflammatory response to diesel exhaust is compartmentalised, related to differing antioxidant responses in the conducting airway and alveolar regions.


Assuntos
Antioxidantes/metabolismo , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , Emissões de Veículos/toxicidade , Adulto , Líquido da Lavagem Broncoalveolar/química , Método Duplo-Cego , Feminino , Humanos , Imuno-Histoquímica , Inflamação , Masculino , Tamanho da Partícula , Testes de Função Respiratória , Estatísticas não Paramétricas , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...