Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Methods ; 20(1): 27, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355519

RESUMO

BACKGROUND: The challenge of pigeonpea breeding lies in its photosensitivity and seasonal specificity. This poses a problem to the breeder, as it restricts to single generation advancement in a year. Currently, the cross to cultivar gap is twelve to thirteen years resulting in a limited number of varietal releases over the past six decades. Shortening the breeding cycle was need of the hour, unlikely achieved by conventional breeding. To overcome these hindrances speed breeding was a necessary leap. An experiment was planned to optimize the speed breeding coupled with single seed descent and seed or pod chip-based genotyping to shorten the breeding cycle in pigeonpea at ICRISAT, Hyderabad. Monitored photoperiod, light wavelength, temperature and crop management regime were the indicators attributing to the success of speed breeding. RESULT: A photoperiod of 13 h: 8 h: 13 h at vegetative: flowering and pod filling stages is ideal for shortening the breeding cycle. Broad spectrum light (5700 K LED) hastened early vegetative growth and pod formation. Whereas far-red (735 nm) light favoured early flowering. A significant difference between the photoperiods, genotypes as well as photoperiod x genotype interaction for both days to flowering and plant height was noted. CONCLUSION: The optimized protocol serves as a road map for rapid generation advancement in pigeonpea. Deploying this protocol, it is possible to advance 2-4 generations per year. The breeding cycle can be reduced to 2-4 years which otherwise takes 7 years under conventional breeding. Single Seed Descent and seed or pod chip-based genotyping for early generation marker assisted selection, strengthened the precision of this technique aiding in high throughput line development.

2.
Plant Genome ; 16(4): e20361, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37408143

RESUMO

Malnutrition is a major challenge globally, and groundnut is a highly nutritious self-pollinated legume crop blessed with ample genomic resources, including the routine deployment of genomic-assisted breeding. This study aimed to identify genomic regions and candidate genes for high iron (Fe) and zinc (Zn) content, utilizing a biparental mapping population (ICGV 00440 × ICGV 06040;). Genetic mapping and quantitative trait locus (QTL) analysis (474 mapped single-nucleotide polymorphism loci; 1536.33 cM) using 2 seasons of phenotypic data together with genotypic data identified 5 major main-effect QTLs for Fe content. These QTLs exhibited log-of-odds (LOD) scores ranging from 6.5 to 7.4, explaining phenotypic variation (PVE) ranging from 22% (qFe-Ah01) to 30.0% (qFe-Ah14). Likewise, four major main effect QTLs were identified for Zn content, with LOD score ranging from 4.4 to 6.8 and PVE ranging from 21.8% (qZn-Ah01) to 32.8% (qZn-Ah08). Interestingly, three co-localized major and main effect QTLs (qFe-Ah01, qZn-Ah03, and qFe-Ah11) were identified for both Fe and Zn contents. These genomic regions harbored key candidate genes, including zinc/iron permease transporter, bZIP transcription factor, and vacuolar iron transporter which likely play pivotal roles in the accumulation of Fe and Zn contents in seeds. The findings of this study hold potential for fine mapping and diagnostic marker development for high Fe and Zn contents in groundnut.


Assuntos
Fabaceae , Locos de Características Quantitativas , Zinco , Melhoramento Vegetal , Fabaceae/genética , Ferro
3.
Front Genet ; 14: 1128182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007937

RESUMO

Seed size is not only a yield-related trait but also an important measure to determine the commercial value of groundnut in the international market. For instance, small size is preferred in oil production, whereas large-sized seeds are preferred in confectioneries. In order to identify the genomic regions associated with 100-seed weight (HSW) and shelling percentage (SHP), the recombinant inbred line (RIL) population (Chico × ICGV 02251) of 352 individuals was phenotyped for three seasons and genotyped with an Axiom_Arachis array containing 58K SNPs. A genetic map with 4199 SNP loci was constructed, spanning a map distance of 2708.36 cM. QTL analysis identified six QTLs for SHP, with three consistent QTLs on chromosomes A05, A08, and B10. Similarly, for HSW, seven QTLs located on chromosomes A01, A02, A04, A10, B05, B06, and B09 were identified. BIG SEED locus and spermidine synthase candidate genes associated with seed weight were identified in the QTL region on chromosome B09. Laccase, fibre protein, lipid transfer protein, senescence-associated protein, and disease-resistant NBS-LRR proteins were identified in the QTL regions associated with shelling percentage. The associated markers for major-effect QTLs for both traits successfully distinguished between the small- and large-seeded RILs. QTLs identified for HSW and SHP can be used for developing potential selectable markers to improve the cultivars with desired seed size and shelling percentage to meet the demands of confectionery industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...