Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 670: 337-347, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763029

RESUMO

Electroactive coatings for smart wearable textiles based on a furan bio-epoxy monomer (BOMF) crosslinked with isophorone diamine (IPD) and additivated with carbon nanotubes (CNTs) are reported herein. The effect of BOMF/IPD molar ratio on the curing reaction, as well as on the properties of the crosslinked resins was first assessed, and it was found that 1.5:1 BOMF/IPD molar ratio provided higher heat of reaction, glass transition temperature, and mechanical performance. The resin was then modified with CNT to prepare electrically conductive nanocomposite films, which exhibited conductivity values increased by eight orders of magnitude upon addition of 5 phr of CNTs. The epoxy/CNT nanocomposites were finally applied as coatings onto a cotton fabric to develop electrically conductive, hydrophobic and breathable textiles. Notably, the integration of CNTs imparted efficient and reversible electrothermal behavior to the cotton fabric, showcasing its potential application in smart and comfortable wearable electronic devices.

2.
Molecules ; 28(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836737

RESUMO

The widespread use of synthetic plastics, as well as the waste produced at the end of their life cycle, poses serious environmental issues. In this context, bio-based plastics, i.e., natural polymers produced from renewable resources, represent a promising alternative to petroleum-based materials. One potential source of biopolymers is waste from the food industry, the use of which also provides a sustainable and eco-friendly solution to waste management. Thus, the aim of this work concerns the extraction of polysaccharide fractions from lemon, tomato and fennel waste. Characterizing the chemical-physical and thermodynamic properties of these polysaccharides is an essential step in evaluating their potential applications. Hence, the solubility of the extracted polysaccharides in different solvents, including water and organic solvents, was determined since it is an important parameter that determines their properties and applications. Also, acid-base titration was carried out, along with thermoanalytical tests through differential scanning calorimetry. Finally, the electrospinning of waste polysaccharides was investigated to explore the feasibility of obtaining polysaccharide-based membranes. Indeed, electrospun fibers are a promising structure/system via which it is possible to apply waste polysaccharides in packaging or well-being applications. Thanks to processing feasibility, it is possible to electrospin waste polysaccharides by combining them with different materials to obtain porous 3D membranes made of nanosized fibers.


Assuntos
Plásticos , Polissacarídeos , Biopolímeros/química , Plásticos/química , Solventes , Manipulação de Alimentos
3.
Pharmaceutics ; 15(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37376192

RESUMO

In the last decade, significant advances in nanotechnologies, rising from increasing knowledge and refining of technical practices in green chemistry and bioengineering, enabled the design of innovative devices suitable for different biomedical applications. In particular, novel bio-sustainable methodologies are developing to fabricate drug delivery systems able to sagely mix properties of materials (i.e., biocompatibility, biodegradability) and bioactive molecules (i.e., bioavailability, selectivity, chemical stability), as a function of the current demands for the health market. The present work aims to provide an overview of recent developments in the bio-fabrication methods for designing innovative green platforms, emphasizing the relevant impact on current and future biomedical and pharmaceutical applications.

4.
Pharmaceutics ; 15(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36986666

RESUMO

Diabetic wound infections (DWI) represent one of the most costly and disruptive complications in diabetic mellitus. The hyperglycemic state induces a persistent inflammation with immunological and biochemical impairments that promotes delayed wound healing processes and wound infection that often results in extended hospitalization and limb amputations. Currently, the available therapeutic options for the management of DWI are excruciating and expensive. Hence, it is essential to develop and improve DWI-specific therapies able to intervene on multiple fronts. Quercetin (QUE) exhibits excellent anti-inflammatory, antioxidant, antimicrobial and wound healing properties, which makes it a promising molecule for the management of diabetic wounds. In the present study, Poly-lactic acid/poly(vinylpyrrolidone) (PP) co-electrospun fibers loaded with QUE were developed. The results demonstrated a bimodal diameter distribution with contact angle starting from 120°/127° and go to 0° in less than 5 s indicating the hydrophilic nature of fabricated samples. The release QUE kinetics, analyzed in simulated wound fluid (SWF), revealed a strong initial burst release, followed by a constant and continuous QUE release. Moreover, QUE-loaded membranes present excellent antibiofilm and anti-inflammatory capacity and significantly reduce the gene expression of M1 markers tumor necrosis factor (TNF)-α, and IL-1ß in differentiated macrophages. In conclusion, the results suggested that the prepared mats loaded with QUE could be a hopeful drug-delivery system for the effective treatment of diabetic wound infections.

5.
Biomater Adv ; 146: 213312, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36736264

RESUMO

Spinal cord injury (SCI) is characterized by neuroinflammatory processes that are marked by an uncontrolled activation of microglia, which directly damages neurons. Natural and synthetic melanins represent an effective tool to treat neuroinflammation because they possess immunomodulatory properties. Here, the main objective was to evaluate the effect of eumelanin-coated poly(lactic acid) (EU@PLA) aligned microfibers on in vitro model of neuroinflammation related to spinal cord injury in terms of inflammatory mediators' modulation. Aligned fibers were chosen to provide physical cues to guide axonal growth in a specific direction thus restoring the synaptic connection. Eumelanin decorated PLA electrospun substrates were produced combining electrospinning, spin coating and solid-state polymerization processes (oxidative coupling under oxygen atmosphere). Biological response in terms of antioxidant and anti-inflammatory activity was analyzed on an in vitro model of neuroinflammation [microglial cells stimulated with lipopolysaccharide (LPS)]. Cell morphology and EU@PLA mechanism of action, in terms of toll-like receptor-4 (TLR-4) involvement were assessed. The results show that EU@PLA fibers were able to decrease reactive oxygen species, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-кB) expression >50 % compared to PLA + LPS and interleukin 6 (IL-6) secretion about 20 %. Finally, the mechanism of action of EU@PLA in microglia was found to be dependent on the TLR-4 signaling. Protein expression analysis revealed a decreased in TLR-4 production induced by LPS stimulation in presence of EU@PLA. Overall, our results show that EU@PLA represents an innovative and effective strategy for the control of inflammatory response in central nervous system.


Assuntos
Melaninas , Traumatismos da Medula Espinal , Ratos , Animais , Receptor 4 Toll-Like , Ratos Sprague-Dawley , Doenças Neuroinflamatórias , Lipopolissacarídeos/farmacologia , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Poliésteres
6.
Sensors (Basel) ; 23(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36772646

RESUMO

Fiber electronics, such as those produced by the electrospinning technique, have an extensive range of applications including electrode surfaces for batteries and sensors, energy storage, electromagnetic interference shielding, antistatic coatings, catalysts, drug delivery, tissue engineering, and smart textiles. New composite materials and blends from conductive-semiconductive polymers (C-SPs) offer high surface area-to-volume ratios with electrical tunability, making them suitable for use in fields including electronics, biofiltration, tissue engineering, biosensors, and "green polymers". These materials and structures show great potential for embedded-electronics tissue engineering, active drug delivery, and smart biosensing due to their electronic transport behavior and mechanical flexibility with effective biocompatibility. Doping, processing methods, and morphologies can significantly impact the properties and performance of C-SPs and their composites. This review provides an overview of the current literature on the processing of C-SPs as nanomaterials and nanofibrous structures, mainly emphasizing the electroactive properties that make these structures suitable for various applications.

7.
Polymers (Basel) ; 14(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36236197

RESUMO

In the last two decades, several processes have been explored for the development of micro and/or nanostructured substrates by sagely physically and/or chemically manipulating polymer materials. These processes have to be designed to overcome some of the limitations of the traditional ones in terms of feasibility, reproducibility, and sustainability. Herein, the primary aim of this work is to focus on the enormous potential of using a high voltage electric field to manipulate polymers from synthetic and/or natural sources for the fabrication of different devices based on elementary units, i.e., fibers or particles, with different characteristic sizes-from micro to nanoscale. Firstly, basic principles and working mechanisms will be introduced in order to correlate the effect of selected process parameters (i.e., an applied voltage) on the dimensional features of the structures. Secondly, a comprehensive overview of the recent trends and potential uses of these processes will be proposed for different biomedical and bio-sustainable application areas.

8.
Molecules ; 27(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35408602

RESUMO

The management of periodontitis remains a vital clinical challenge due to the interplay between the microorganisms of the dental biofilm and the host inflammatory response leading to a degenerative process in the surrounding tissues. Quercetin (QUE), a natural flavonol found in many foods, including apples, onions and tea, has exhibited prolonged and strong antibiofilm and anti-inflammatory effects both in vitro and in vivo. However, its clinical application is limited by its poor stability and water solubility, as well as its low bioavailability. Thus, in the present study, electrospun polylactic acid (PLA) nanofibers loaded with different amounts (5−10% w/w) of QUE were produced to rapidly respond to the acidic microenvironment typical of periodontal pockets during periodontal disease. This strategy demonstrated that PLA-QUE membranes can act as a drug reservoir releasing high QUE concentrations in the presence of oral bacterial infection (pH < 5.5), and thus limiting Pseudomonas aeruginosa PAO1 and Streptococcus mutans biofilm maturation. In addition, released QUE exerts antioxidant and anti-inflammatory effects on P. gingivalis Lipopolysaccharide (LPS)-stimulated human gingival fibroblast (HGFs). The reported results confirmed that PLA-QUE membranes could inhibit subgingival biofilm maturation while reducing interleukin release, thereby limiting host inflammatory response. Overall, this study provided an effective pH-sensitive drug delivery system as a promising strategy for treating periodontitis.


Assuntos
Nanofibras , Periodontite , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Nanofibras/química , Periodontite/tratamento farmacológico , Poliésteres/química , Quercetina/química
9.
Polymers (Basel) ; 14(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215721

RESUMO

The sustainable management of multilayer paper/plastic waste is a technological challenge due to its composite nature. In this paper, a mechanical recycling approach for multilayer cartons (MC) is reported, illustrating the realization of thermoplastic composites based on recycled polyethylene and an amount of milled MC ranging from 20 to 90 wt%. The effect of composition of the composites on the morphology and on thermal, mechanical, and water absorption behavior was investigated and rationalized, demonstrating that above 80 wt% of MC, the fibrous nature of the filler dominates the overall properties of the materials. A maleated polyethylene was also used as a coupling agent and its effectiveness in improving mechanical parameters of composites up to 60 wt% of MC was highlighted.

10.
Polymers (Basel) ; 13(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34451321

RESUMO

In this paper, a sustainable strategy to valorize and recycle heterogeneous polymer-based post-consumer waste is proposed. This strategy is based on a high-energy mechano-chemical treatment and has been applied to a polyolefin-rich fraction, coded as FIL/S, deriving from household plastic waste collection. This processing, performed in a planetary ball mill, allowed us to obtain fine grinding and, consequently, to induce an intimate mixing of the different polymer fractions and contaminants composing the FIL/S, as demonstrated by SEM analysis. As a result, an improvement in the deformability of the treated material was obtained, recording values for elongation at the break which were two and half times higher than the neat FIL/S. Finally, the addition of small amounts of organic peroxide during mechano-chemical treatment was tested, determining a more homogeneous morphology and a further improvement in mechanical parameters.

11.
Nanomaterials (Basel) ; 10(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560209

RESUMO

To date, the implant-associated infections represent a worldwide challenge for the recently reported bacterial drug resistance that can lead to the inefficacy or low efficacy of conventional antibiotic therapies. Plant polyphenolic compounds, including resveratrol (RSV), are increasingly gaining consensus as valid and effective alternatives to antibiotics limiting antibiotic resistance. In this study, electrospun polylactic acid (PLA) membranes loaded with different concentrations of RSV are synthesized and characterized in their chemical, morphological, and release features. The obtained data show that the RSV release rate from the PLA-membranes is remarkably higher in acidic conditions than at neutral pH. In addition, a change in pH from neutral to slightly acidic triggers a significant increase in the RSV release. This behavior indicates that the PLA-RSV membranes can act as drug reservoir when the environmental pH is neutral, starting to release the bioactive molecules when the pH decreases, as in presence of oral bacterial infection. Indeed, our results demonstrate that PLA-RSV2 displays a significant antibacterial and antibiofilm activity against two bacterial strains, Pseudomonas aeruginosa PAO1, and Streptococcus mutans, responsible for both acute and chronic infections in humans, thus representing a promising solution for the prevention of the implant-associated infections.

12.
Materials (Basel) ; 11(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134602

RESUMO

Eumelanin integration in silica aerogel (SA) was achieved via supercritical adsorption of 5,6-dyhydroxyindole (DHI) from CO2. Notably, after the supercritical treatment, DHI evolved towards spontaneous polymerization, which resulted in uniform pigment development over the SA. The new material was characterized for its morphological and physicochemical properties, disclosing the formation of a eumelanin-like coating, as confirmed by UV⁻vis and electron paramagnetic resonance (EPR) spectroscopy.

13.
ACS Appl Mater Interfaces ; 9(46): 40070-40076, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29083852

RESUMO

Within the framework of neurodegenerative disorder therapies, the fabrication of 3D eumelanin architectures represents a novel strategy to realize tissue-engineering scaffolds for neuronal cell growth and control by providing both mechanical support and biological signals. Here, an appropriate procedure combining electrospinning, spin coating and solid-state polymerization process is established to realize the scaffolds. For biological analysis, a human derived cell line SH-SY5Y from neuroblastoma is used. Cell maturation on eumelanin microfibers, random and aligned, is evaluated by using confocal analysis and specific markers of differentiating neurons (ßIII tubulin and GAP-43 expression). Cell morphology is tested by SEM analysis and immunofluorescence techniques. As results, eumelanin coated microfibers prove capable to support biological response in terms of cell survival, adhesion and spreading and to promote cell differentiation toward a more mature neuronal phenotype as confirmed by GAP-43 expression over the culture.


Assuntos
Melaninas/química , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neuroblastoma , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...