Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(44): eabq7623, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36322664

RESUMO

The hot plasma within merging galaxy clusters is predicted to be filled with shocks and turbulence that may convert part of their kinetic energy into relativistic electrons and magnetic fields generating synchrotron radiation. Analyzing Low Frequency Array (LOFAR) observations of the galaxy cluster Abell 2255, we show evidence of radio synchrotron emission distributed over very large scales of at least 5 megaparsec. The pervasive radio emission witnesses that shocks and turbulence efficiently transfer kinetic energy into relativistic particles and magnetic fields in a region that extends up to the cluster outskirts. The strength of the emission requires a magnetic field energy density at least 100 times higher than expected from a simple compression of primordial fields, presumably implying that dynamo operates efficiently also in the cluster periphery. It also suggests that nonthermal components may contribute substantially to the pressure of the intracluster medium in the cluster periphery.

2.
Sci Adv ; 3(10): e1701634, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28983512

RESUMO

Galaxy clusters are the most massive constituents of the large-scale structure of the universe. Although the hot thermal gas that pervades galaxy clusters is relatively well understood through observations with x-ray satellites, our understanding of the nonthermal part of the intracluster medium (ICM) remains incomplete. With Low-Frequency Array (LOFAR) and Giant Metrewave Radio Telescope (GMRT) observations, we have identified a phenomenon that can be unveiled only at extremely low radio frequencies and offers new insights into the nonthermal component. We propose that the interplay between radio-emitting plasma and the perturbed intracluster medium can gently reenergize relativistic particles initially injected by active galactic nuclei. Sources powered through this mechanism can maintain electrons at higher energies than radiative aging would allow. If this mechanism is common for aged plasma, a population of mildly relativistic electrons can be accumulated inside galaxy clusters providing the seed population for merger-induced reacceleration mechanisms on larger scales such as turbulence and shock waves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...