Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110705

RESUMO

Reflectance anisotropy spectroscopy (RAS) has been largely used to investigate organic compounds: Langmuir-Blodgett and Langmuir-Schaeffer layers, the organic molecular beam epitaxy growth in situ and in real time, thin and ultrathin organic films exposed to volatiles, in ultra-high vacuum (UHV), in controlled atmosphere and even in liquid. In all these cases, porphyrins and porphyrin-related compounds have often been used, taking advantage of the peculiar characteristics of RAS with respect to other techniques. The technical modification of a RAS spectrometer (CD-RAS: circular dichroism RAS) allows us to investigate the circular dichroism of samples instead of the normally studied linear dichroism: CD-RAS measures (in transmission mode) the anisotropy of the optical properties of a sample under right and left circularly polarized light. Although commercial spectrometers exist to measure the circular dichroism of substances, the "open structure" of this new spectrometer and its higher flexibility in design makes it possible to couple it with UHV systems or other experimental configurations. The importance of chirality in the development of organic materials (from solutions to the solid state, as thin layers deposited-in liquid or in vacuum-on transparent substrates) could open interesting possibilities to a development in the investigation of the chirality of organic and biological layers. In this manuscript, after the detailed explanation of the CD-RAS technique, some calibration tests with chiral porphyrin assemblies in solution or deposited in solid film are reported to demonstrate the quality of the results, comparing curves obtained with CD-RAS and a commercial spectrometer.

2.
Chemistry ; 24(66): 17538-17544, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30230050

RESUMO

Corrole derivatives have been recently employed in many applications at the solid-liquid interface. Therefore, the structural arrangement of the molecular layers in direct contact with the liquid is of fundamental interest. We investigated in solution the deposition of molecular layers of the previously prepared water-soluble phosphorus complex of a 2-sulfonato-10-(4-sulfonatophenyl)-5,15-dimesitylcorrole [see synthesis in our previous paper, M. Naitana et al., Chem. Eur. J. 2017, 23, 905-916]. The layer formation of P corroles onto the Au(111) surface was monitored by STM in situ, that is, with the substrate immersed in the solution. Marked differences in the morphology between the organic layer formed on the substrate and that deposited after solvent evaporation (drop casting) are reported. In particular, the coating of gold was more effective and stable in the presence of liquid. Preservation of functionality of the corrole molecules after adsorption was verified. This result validates the relevance of corrole layers at the solid-liquid interface to exploit the peculiar properties of these molecules in real-world applications.

3.
Beilstein J Nanotechnol ; 6: 438-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821684

RESUMO

Despite the rising technological interest in the use of calcium-modified TiO2 surfaces in biomedical implants, the Ca/TiO2 interface has not been studied in an aqueous environment. This investigation is the first report on the use of in situ scanning tunneling microscopy (STM) to study calcium-modified rutile TiO2(110) surfaces immersed in high purity water. The TiO2 surface was prepared under ultrahigh vacuum (UHV) with repeated sputtering/annealing cycles. Low energy electron diffraction (LEED) analysis shows a pattern typical for the surface segregation of calcium, which is present as an impurity on the TiO2 bulk. In situ STM images of the surface in bulk water exhibit one-dimensional rows of segregated calcium regularly aligned with the [001] crystal direction. The in situ-characterized morphology and structure of this Ca-modified TiO2 surface are discussed and compared with UHV-STM results from the literature. Prolonged immersion (two days) in the liquid leads to degradation of the overlayer, resulting in a disordered surface. X-ray photoelectron spectroscopy, performed after immersion in water, confirms the presence of calcium.

4.
J Mol Recognit ; 20(2): 122-31, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17407190

RESUMO

We coupled protein-protein docking procedure with molecular dynamics (MD) simulation to investigate the electron transfer (ET) complex Azurin-Cytochrome c551 whose transient character makes difficult a direct experimental investigation. The ensemble of complexes generated by the docking algorithm are filtered according to both the distance between the metal ions in the redox centres of the two proteins and to the involvement of suitable residues at the interface. The resulting best complex (BC) is characterized by a distance of 1.59 nm and involves Val23 and Ile59 of Cytochrome c551. The ET properties have been evaluated in the framework of the Pathways model and compared with experimental data. A 60 ns long MD simulation, carried on at full hydration, evidenced that the two protein molecules retain their mutual spatial positions upon forming the complex. An analysis of the ET properties of the complex, monitored at regular time intervals, has revealed that several different ET paths are possible, with the occasional intervening of water molecules. Furthermore, the temporal evolution of the geometric distance between the two redox centres is characterized by very fast fluctuations around an average value of 1.6 nm, with periodic jumps at 2 nm with a frequency of about 70 MHz. Such a behaviour is discussed in connection with a nonlinear dynamics of protein systems and its possible implications in the ET process are explored.


Assuntos
Azurina/metabolismo , Proteínas de Bactérias/metabolismo , Simulação por Computador , Grupo dos Citocromos c/metabolismo , Modelos Moleculares , Azurina/química , Proteínas de Bactérias/química , Grupo dos Citocromos c/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Cinética , Ligação Proteica , Análise de Sequência de Proteína
5.
Chemphyschem ; 4(11): 1183-8, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-14652996

RESUMO

The redox metalloprotein yeast cytochrome c was directly self-chemisorbed on "bare" gold electrodes through the free sulfur-containing group Cys102. Topological, spectroscopic, and electron transfer properties of the immobilised molecules were investigated by in situ scanning probe microscopy and cyclic voltammetry. Atomic force and scanning tunnelling microscopy revealed individual protein molecules adsorbed on the gold substrate, with no evidence of aggregates. The adsorbed proteins appear to be firmly bound to gold and display dimensions in good agreement with crystallographic data. Cyclic voltammetric analysis showed that up to 84% of the electrode surface is functionalised with electroactive proteins whose measured redox midpoint potential is in good agreement with the formal potential. Our results clearly indicate that this variant of cytochrome c is adsorbed on bare gold electrodes with preservation of morphological properties and redox functionality.


Assuntos
Citocromos c/química , Ouro/química , Leveduras/química , Biologia Computacional , Cristalografia por Raios X , Cisteína/genética , Bases de Dados de Proteínas , Dissulfetos/química , Eletroquímica , Eletrodos , Transporte de Elétrons , Microscopia de Força Atômica , Microscopia de Tunelamento , Oxirredução , Potenciometria , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Leveduras/metabolismo
6.
Chemphyschem ; 4(11): 1189-95, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-14652997

RESUMO

A mutant of copper plastocyanin, covalently bound to an Au (111) surface through an engineered disulfide bridge, was investigated in aqueous medium by atomic force microscopy (AFM) and molecular dynamics (MD) simulations. Tapping-mode AFM images revealed adsorption of single molecules which are homogeneously distributed over the substrate and strongly bound to gold and display uniform lateral size. A statistical analysis of the height of the macromolecules on the gold substrate evidenced a distribution around a mean value consistent with that expected from the crystallographic data and with a relatively large standard deviation. A 10-ns classical MD simulation of mutated plastocyanin, hydrated by a layer of water, covalently bound to a gold surface by one or two sulfur atoms, was performed. The simulations indicate that the bound protein retains, in both cases, its overall tertiary structure during the dynamic evolution. Moreover, the macro-molecule can assume different orientations with respect to the gold substrate, which give rise to a distribution of heights on the gold substrate. Experimental and MD simulation results are compared and discussed in connection with the topological and dynamical properties of the protein system.


Assuntos
Ouro/química , Plastocianina/química , Adsorção , Sítios de Ligação , Simulação por Computador , Cisteína/genética , Interpretação Estatística de Dados , Dissulfetos/química , Microscopia de Força Atômica/métodos , Conformação Molecular , Mutação , Plastocianina/genética , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/genética , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...