Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Energy Policy ; 45-222(5): 18-23, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23576835

RESUMO

Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of 'additional biomass' - biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy - can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy.

2.
J Environ Manage ; 84(4): 412-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16928418

RESUMO

Southern Europe is exposed to anthropogenic and natural forest fires. These result in loss of lives, goods and infrastructure, but also deteriorate the natural environment and degrade ecosystems. The early detection and combating of such catastrophes requires the use of a decision support system (DSS) for emergency management. The current literature reports on a series of efforts aimed to deliver DSSs for the management of the forest fires by utilising technologies like remote sensing and geographical information systems (GIS), yet no integrated system exists. This manuscript presents the results of scientific research aiming to the development of a DSS for managing forest fires. The system provides a series of software tools for the assessment of the propagation and combating of forest fires based on Arc/Info, ArcView, Arc Spatial Analyst, Arc Avenue, and Visual C++ technologies. The system integrates GIS technologies under the same data environment and utilises a common user interface to produce an integrated computer system based on semi-automatic satellite image processing (fuel maps), socio-economic risk modelling and probabilistic models that would serve as a useful tool for forest fire prevention, planning and management. Its performance has been demonstrated via real time up-to-date accurate information on the position and evolution of the fire. The system can assist emergency assessment, management and combating of the incident. A site demonstration and validation has been accomplished for the island of Evoia, Greece, an area particularly vulnerable to forest fires due to its ecological characteristics and prevailing wind patterns.


Assuntos
Técnicas de Apoio para a Decisão , Planejamento em Desastres , Incêndios , Sistemas de Informação Geográfica , Grécia , Comunicações Via Satélite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...