Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37818943

RESUMO

Making adaptive choices in dynamic environments requires flexible decision policies. Previously, we showed how shifts in outcome contingency change the evidence accumulation process that determines decision policies. Using in silico experiments to generate predictions, here we show how the cortico-basal ganglia-thalamic (CBGT) circuits can feasibly implement shifts in decision policies. When action contingencies change, dopaminergic plasticity redirects the balance of power, both within and between action representations, to divert the flow of evidence from one option to another. When competition between action representations is highest, the rate of evidence accumulation is the lowest. This prediction was validated in in vivo experiments on human participants, using fMRI, which showed that (1) evoked hemodynamic responses can reliably predict trial-wise choices and (2) competition between action representations, measured using a classifier model, tracked with changes in the rate of evidence accumulation. These results paint a holistic picture of how CBGT circuits manage and adapt the evidence accumulation process in mammals.


Assuntos
Gânglios da Base , Tomada de Decisões , Humanos , Gânglios da Base/fisiologia , Tomada de Decisões/fisiologia , Mamíferos
2.
Elife ; 102021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951589

RESUMO

In uncertain or unstable environments, sometimes the best decision is to change your mind. To shed light on this flexibility, we evaluated how the underlying decision policy adapts when the most rewarding action changes. Human participants performed a dynamic two-armed bandit task that manipulated the certainty in relative reward (conflict) and the reliability of action-outcomes (volatility). Continuous estimates of conflict and volatility contributed to shifts in exploratory states by changing both the rate of evidence accumulation (drift rate) and the amount of evidence needed to make a decision (boundary height), respectively. At the trialwise level, following a switch in the optimal choice, the drift rate plummets and the boundary height weakly spikes, leading to a slow exploratory state. We find that the drift rate drives most of this response, with an unreliable contribution of boundary height across experiments. Surprisingly, we find no evidence that pupillary responses associated with decision policy changes. We conclude that humans show a stereotypical shift in their decision policies in response to environmental changes.


Assuntos
Tomada de Decisões , Políticas , Humanos , Incerteza
3.
eNeuro ; 4(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28856241

RESUMO

Structural learning is a phenomenon characterized by faster learning in a new situation that shares features of previously experienced situations. One prominent example within the sensorimotor domain is that human participants are faster to counter a novel rotation following experience with a set of variable visuomotor rotations. This form of learning is thought to occur implicitly through the updating of an internal forward model, which predicts the sensory consequences of motor commands. However, recent work has shown that much of rotation learning occurs through an explicitly accessible process, such as movement re-aiming. We sought to determine if structural learning in a visuomotor rotation task is purely implicit (e.g., driven by an internal model) or explicitly accessible (i.e., re-aiming). We found that participants exhibited structural learning: following training with a variable set of rotations, they more quickly learned a novel rotation. This benefit was entirely conferred by the explicit re-aiming of movements. Implicit learning offered little to no contribution. Next, we investigated the specificity of this learning benefit by exposing participants to a novel perturbation drawn from a statistical structure either congruent or incongruent with their prior experience. We found that participants who experienced congruent training and test phase structure (i.e., rotations to rotation) learned more quickly than participants exposed to incongruent training and test phase structure (i.e., gains to rotation) and a control group. These results suggest that structural learning in a visuomotor rotation task is specific to previously experienced statistical structure and expressed via explicit re-aiming of movements.


Assuntos
Adaptação Psicológica , Aprendizagem , Atividade Motora , Percepção Visual , Adaptação Fisiológica , Adolescente , Análise de Variância , Feminino , Mãos , Humanos , Masculino , Modelos Psicológicos , Rotação , Adulto Jovem
4.
J Neurophysiol ; 118(1): 383-393, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28404830

RESUMO

Generalization is a fundamental aspect of behavior, allowing for the transfer of knowledge from one context to another. The details of this transfer are thought to reveal how the brain represents what it learns. Generalization has been a central focus in studies of sensorimotor adaptation, and its pattern has been well characterized: Learning of new dynamic and kinematic transformations in one region of space tapers off in a Gaussian-like fashion to neighboring untrained regions, echoing tuned population codes in the brain. In contrast to common allusions to generalization in cognitive science, generalization in visually guided reaching is usually framed as a passive consequence of neural tuning functions rather than a cognitive feature of learning. While previous research has presumed that maximum generalization occurs at the instructed task goal or the actual movement direction, recent work suggests that maximum generalization may occur at the location of an explicitly accessible movement plan. Here we provide further support for plan-based generalization, formalize this theory in an updated model of adaptation, and test several unexpected implications of the model. First, we employ a generalization paradigm to parameterize the generalization function and ascertain its maximum point. We then apply the derived generalization function to our model and successfully simulate and fit the time course of implicit adaptation across three behavioral experiments. We find that dynamics predicted by plan-based generalization are borne out in the data, are contrary to what traditional models predict, and lead to surprising implications for the behavioral, computational, and neural characteristics of sensorimotor adaptation.NEW & NOTEWORTHY The pattern of generalization is thought to reveal how the motor system represents learned actions. Recent work has made the intriguing suggestion that maximum generalization in sensorimotor adaptation tasks occurs at the location of the learned movement plan. Here we support this interpretation, develop a novel model of motor adaptation that incorporates plan-based generalization, and use the model to successfully predict surprising dynamics in the time course of adaptation across several conditions.


Assuntos
Adaptação Fisiológica , Generalização Psicológica , Modelos Neurológicos , Atividade Motora , Adaptação Fisiológica/fisiologia , Adolescente , Adulto , Retroalimentação Sensorial , Feminino , Generalização Psicológica/fisiologia , Objetivos , Humanos , Masculino , Atividade Motora/fisiologia , Psicofísica , Adulto Jovem
5.
J Neurosci ; 35(26): 9568-79, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26134640

RESUMO

A popular model of human sensorimotor learning suggests that a fast process and a slow process work in parallel to produce the canonical learning curve (Smith et al., 2006). Recent evidence supports the subdivision of sensorimotor learning into explicit and implicit processes that simultaneously subserve task performance (Taylor et al., 2014). We set out to test whether these two accounts of learning processes are homologous. Using a recently developed method to assay explicit and implicit learning directly in a sensorimotor task, along with a computational modeling analysis, we show that the fast process closely resembles explicit learning and the slow process approximates implicit learning. In addition, we provide evidence for a subdivision of the slow/implicit process into distinct manifestations of motor memory. We conclude that the two-state model of motor learning is a close approximation of sensorimotor learning, but it is unable to describe adequately the various implicit learning operations that forge the learning curve. Our results suggest that a wider net be cast in the search for the putative psychological mechanisms and neural substrates underlying the multiplicity of processes involved in motor learning.


Assuntos
Aprendizagem/fisiologia , Modelos Psicológicos , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adaptação Fisiológica/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia , Rotação , Fatores de Tempo , Adulto Jovem
6.
J Neurophysiol ; 113(10): 3836-49, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25855690

RESUMO

There is mounting evidence for the idea that performance in a visuomotor rotation task can be supported by both implicit and explicit forms of learning. The implicit component of learning has been well characterized in previous experiments and is thought to arise from the adaptation of an internal model driven by sensorimotor prediction errors. However, the role of explicit learning is less clear, and previous investigations aimed at characterizing the explicit component have relied on indirect measures such as dual-task manipulations, posttests, and descriptive computational models. To address this problem, we developed a new method for directly assaying explicit learning by having participants verbally report their intended aiming direction on each trial. While our previous research employing this method has demonstrated the possibility of measuring explicit learning over the course of training, it was only tested over a limited scope of manipulations common to visuomotor rotation tasks. In the present study, we sought to better characterize explicit and implicit learning over a wider range of task conditions. We tested how explicit and implicit learning change as a function of the specific visual landmarks used to probe explicit learning, the number of training targets, and the size of the rotation. We found that explicit learning was remarkably flexible, responding appropriately to task demands. In contrast, implicit learning was strikingly rigid, with each task condition producing a similar degree of implicit learning. These results suggest that explicit learning is a fundamental component of motor learning and has been overlooked or conflated in previous visuomotor tasks.


Assuntos
Adaptação Fisiológica/fisiologia , Aprendizagem/fisiologia , Movimento/fisiologia , Orientação/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Análise de Variância , Feminino , Humanos , Masculino , Estimulação Luminosa , Rotação , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...