Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 561, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816458

RESUMO

Novel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world. Each sample represents fungal DNA extracted from 24 m3 of air. We applied a conservative bioinformatics pipeline that filtered out sequences that did not show strong evidence of representing a fungal species. The pipeline yielded 27,954 species-level operational taxonomic units (OTUs). Each OTU is accompanied by a probabilistic taxonomic classification, validated through comparison with expert evaluations. To examine the potential of the data for ecological analyses, we partitioned the variation in species distributions into spatial and seasonal components, showing a strong effect of the annual mean temperature on community composition.


Assuntos
Microbiologia do Ar , DNA Fúngico , Esporos Fúngicos , DNA Fúngico/análise , Fungos/genética , Fungos/classificação , Biodiversidade
2.
Proc Natl Acad Sci U S A ; 117(49): 31249-31258, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229550

RESUMO

For species to stay temporally tuned to their environment, they use cues such as the accumulation of degree-days. The relationships between the timing of a phenological event in a population and its environmental cue can be described by a population-level reaction norm. Variation in reaction norms along environmental gradients may either intensify the environmental effects on timing (cogradient variation) or attenuate the effects (countergradient variation). To resolve spatial and seasonal variation in species' response, we use a unique dataset of 91 taxa and 178 phenological events observed across a network of 472 monitoring sites, spread across the nations of the former Soviet Union. We show that compared to local rates of advancement of phenological events with the advancement of temperature-related cues (i.e., variation within site over years), spatial variation in reaction norms tend to accentuate responses in spring (cogradient variation) and attenuate them in autumn (countergradient variation). As a result, among-population variation in the timing of events is greater in spring and less in autumn than if all populations followed the same reaction norm regardless of location. Despite such signs of local adaptation, overall phenotypic plasticity was not sufficient for phenological events to keep exact pace with their cues-the earlier the year, the more did the timing of the phenological event lag behind the timing of the cue. Overall, these patterns suggest that differences in the spatial versus temporal reaction norms will affect species' response to climate change in opposite ways in spring and autumn.


Assuntos
Adaptação Fisiológica/fisiologia , Mudança Climática , Monitoramento Ambiental , População , Animais , Ecossistema , Estações do Ano , Temperatura , U.R.S.S.
4.
Sci Data ; 7(1): 47, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047153

RESUMO

We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890-2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for first spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staff of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change.


Assuntos
Biota , Mudança Climática , Bases de Dados Factuais , Quirguistão , República de Belarus , Federação Russa , Estações do Ano , Ucrânia , Uzbequistão
5.
PhytoKeys ; 170: 83-91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33442325

RESUMO

It has been controversial whether Betula tatewakiana, a dwarf birch distributed in Hokkaido of northern Japan, is an endemic species or a synonym of B. ovalifolia broadly distributed in northeast Asia. The endemic hypothesis is based on the idea that B. tatewakiana is diploid while B. ovalifolia is tetraploid and that they are separated based on the ploidy level; however, no chromosome data have actually been published before. Resolving the taxonomic problem is crucial also in judging the conservation priority of B. tatewakiana in a global perspective. Our chromosome observation revealed that B. tatewakiana is tetraploid as well as B. ovalifolia. We also conducted morphological observations and clarified that B. tatewakiana is morphologically identical to B. ovalifolia in white hairs and dense resinous glands respectively on adaxial and abaxial leaf surfaces, in which they differ from closely related species in the same section Fruticosae. We conclude that the hypothesis that B. tatewakiana is a Hokkaido endemic based on the ploidy level is not supported and that B. tatewakiana should be merged with B. ovalifolia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...