Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Rev Anti Infect Ther ; 20(10): 1299-1308, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33164589

RESUMO

INTRODUCTION: COVID-19 pandemic has been declared as a global emergency by the World Health Organization which has mounted global pressure on the healthcare system. The design and development of rapid tests for the precise and early detection of infection are urgently needed to detect the disease and also for bulk screening of infected persons. The traditional drugs moderately control the symptoms, but so far, no specific drug has been discovered. The prime concern is to device novel tools for rapid and precise diagnosis, drug delivery, and effective therapies for coronavirus. In this context, nanotechnology offers novel ways to fight against COVID-19. AREA COVERED: This review includes the use of nanomaterials for the control of COVID-19. The tools for diagnosis of coronavirus, nano-based vaccines, and nanoparticles as a drug delivery system for the treatment of virus infection have been discussed. The toxicity issues related to nanoparticles have also been addressed. EXPERT OPINION: The research on nanotechnology-based diagnosis, drug delivery, and antiviral therapies is at a preliminary stage. The antiviral nanomedicine therapies are cost-effective and with high quality. Nanoparticles are a promising tool for prevention, diagnosis, antiviral drug delivery, and therapeutics, which may open up new avenues in the treatment of COVID-19.


Assuntos
COVID-19 , Antivirais/uso terapêutico , Humanos , Nanotecnologia , Pandemias/prevenção & controle , SARS-CoV-2
2.
Nanomaterials (Basel) ; 11(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34835665

RESUMO

Nanobiotechnology is considered to be one of the fastest emerging fields. It is still a relatively new and exciting area of research with considerable potential for development. Among the inorganic nanomaterials, biogenically synthesized silver nanoparticles (bio-AgNPs) have been frequently used due to their unique physicochemical properties that result not only from their shape and size but also from surface coatings of natural origin. These properties determine antibacterial, antifungal, antiprotozoal, anticancer, anti-inflammatory, and many more activities of bio-AgNPs. This review provides the current state of knowledge on the methods and mechanisms of biogenic synthesis of silver nanoparticles as well as their potential applications in different fields such as medicine, food, agriculture, and industries.

3.
Viruses ; 13(7)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202815

RESUMO

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health problem that the WHO declared a pandemic. COVID-19 has resulted in a worldwide lockdown and threatened to topple the global economy. The mortality of COVID-19 is comparatively low compared with previous SARS outbreaks, but the rate of spread of the disease and its morbidity is alarming. This virus can be transmitted human-to-human through droplets and close contact, and people of all ages are susceptible to this virus. With the advancements in nanotechnology, their remarkable properties, including their ability to amplify signal, can be used for the development of nanobiosensors and nanoimaging techniques that can be used for early-stage detection along with other diagnostic tools. Nano-based protection equipment and disinfecting agents can provide much-needed protection against SARS-CoV-2. Moreover, nanoparticles can serve as a carrier for antigens or as an adjuvant, thereby making way for the development of a new generation of vaccines. The present review elaborates the role of nanotechnology-based tactics used for the detection, diagnosis, protection, and treatment of COVID-19 caused by the SARS-CoV-2 virus.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/diagnóstico , Nanotecnologia/métodos , Nanotecnologia/tendências , Técnicas Biossensoriais/métodos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Controle de Doenças Transmissíveis/métodos , Saúde Global , Humanos
4.
J Fungi (Basel) ; 7(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672011

RESUMO

Nanotechnology is a new and developing branch that has revolutionized the world by its applications in various fields including medicine and agriculture. In nanotechnology, nanoparticles play an important role in diagnostics, drug delivery, and therapy. The synthesis of nanoparticles by fungi is a novel, cost-effective and eco-friendly approach. Among fungi, Fusarium spp. play an important role in the synthesis of nanoparticles and can be considered as a nanofactory for the fabrication of nanoparticles. The synthesis of silver nanoparticles (AgNPs) from Fusarium, its mechanism and applications are discussed in this review. The synthesis of nanoparticles from Fusarium is the biogenic and green approach. Fusaria are found to be a versatile biological system with the ability to synthesize nanoparticles extracellularly. Different species of Fusaria have the potential to synthesise nanoparticles. Among these, F. oxysporum has demonstrated a high potential for the synthesis of AgNPs. It is hypothesised that NADH-dependent nitrate reductase enzyme secreted by F. oxysporum is responsible for the reduction of aqueous silver ions into AgNPs. The toxicity of nanoparticles depends upon the shape, size, surface charge, and the concentration used. The nanoparticles synthesised by different species of Fusaria can be used in medicine and agriculture.

5.
IET Nanobiotechnol ; 10(6): 389-394, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27906139

RESUMO

The authors report Myxobacteria virescens (M. virescens) mediated synthesis of silver nanoparticles (AgNPs) and its efficacy against Staphylococcus aureus (ATCC-33591), Salmonella typhi (ATCC-51812), Escherichia coli (E. coli) (ATCC-14948), Klebsiella pneumoniae (MTCC-4030) and Pseudomonas aeruginosa (MTCC-4673). The organism exhibiting resistance to various antibiotics showed remarkable sensitivity, when used in combination of antibiotics and AgNPs. Antimicrobial property of AgNPs is playing a significant role in medicine and food storage. In this study, they have used M. virescens for the synthesis of AgNPs, which were characterised by using UV-Vis spectrophotometer, nano-particles tracking and analysis, zeta potential, Fourier transform infrared spectroscopy, X-ray diffraction and transmission electron microscopy. Synthesised AgNPs were impregnated into paper by three different methods, i.e. glass rod method (without binder), glass rod method (with binder) and direct synthesis of AgNPs on paper. Nanoparticles synthesis on paper showed the significant antimicrobial activity against Staphylococcus aureus (ATCC-33591), Salmonella typhi (ATCC-51812), E. coli (ATCC-14948), Klebsiella pneumoniae (MTCC-4030) and Pseudomonas aeruginosa (MTCC-4673). Paper impregnated with AgNPs was used for wrapping of fruits (apples) which increases their shelf life up to 15 days. This study demonstrates a new method for wrapping of fruits, which increases the shelf life of apples.


Assuntos
Conservação de Alimentos , Frutas , Malus , Nanopartículas Metálicas , Myxococcales/metabolismo , Prata , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Testes de Sensibilidade Microbiana
6.
IET Nanobiotechnol ; 8(3): 172-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25082226

RESUMO

Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO3. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.


Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Fungos/fisiologia , Nanopartículas/administração & dosagem , Nanoestruturas/química , Extratos Vegetais/química , Prata/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Composição de Medicamentos/métodos , Fungos/efeitos dos fármacos , Humanos , Teste de Materiais , Nanopartículas/química , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Folhas de Planta/química , Prata/química
7.
J Biomed Nanotechnol ; 9(12): 1962-71, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24266252

RESUMO

We developed a Bioconjugate-Nano-PCR as a rapid and specific method for identification of Candida species in less time. This requires very low concentration of master mix and DNA sample of Candida albicans in conjugation with gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs). We report a modification of the PCR assay with nanoparticles that allows the detection of high fidelity amplification of ITS-rDNA and beta (beta) tubulin gene of Candida species from low concentrated DNA in short period. We synthesized and characterized the covalently attached 34 nm (AuNPs) and 35 nm of (AgNPs) and conjugated with C. albicans DNA sample, which is used as a template for PCR. The use of this nanoparticle modified template improves the sensitivity and specificity of the traditional PCR assay with very low cycles which is very helpful in molecular diagnostics and therapeutics. It proves to be an effective method for identification of Candida species with low concentration of DNA. This type of PCR assay is useful for detection of target gene by enhancing the specificity of the target gene and is less time consuming.


Assuntos
Candida/isolamento & purificação , Ouro/química , Nanopartículas Metálicas/química , Técnicas Microbiológicas/métodos , Nanoconjugados/química , Reação em Cadeia da Polimerase/métodos , Prata/química , Candidíase/diagnóstico , DNA Fúngico/análise , Fusarium/química , Fusarium/metabolismo , Humanos , Técnicas Microbiológicas/instrumentação , Tamanho da Partícula , Reação em Cadeia da Polimerase/instrumentação , Sensibilidade e Especificidade , Fatores de Tempo
8.
IET Nanobiotechnol ; 7(1): 28-32, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23705290

RESUMO

Till date several methods of chemical synthesis of silver nanoparticles (AgNps) are known. Most of the protocol dealing with the chemical synthesis of AgNps involves high pressure, temperature, energy and technical skills. Thus, a method with much greener approach is the need of the hour. Accordingly, the authors have developed a method that is cost-effective, energy-efficient and easy method for the synthesis of AgNps. The AgNps were synthesised by using white sugar and sodium hydroxide (NaOH) in the presence of sunlight. These nanoparticles were characterised by visual observation, ultraviolet-visible (UV-vis) spectrophotometry, Fourier transform infrared (FTIR), nanoparticle tracking and analysis (NTA) and transmission electron microscopy (TEM). The effect of NaOH on the rate of AgNps synthesis was also studied. Formation of AgNps was primarily detected by change in colour of reaction mixture from colourless to yellow after treatment with 1 mM silver salt (AgNO3). UV-vis spectroscopy showed peak at 409 nm. NTA revealed the polydispersed nature of nanoparticles, 15-30 nm in diameter. FTIR showed the presence of gluconic acid as capping agent, which increases the stability of AgNps in the colloids. TEM demonstrated the presence of spherical AgfNps in the range of 10-25 nm. The present method confirms the synthesis of AgNps by using white sugar and NaOH. This method is simple, eco-friendly and economically sustainable, making it amenable to large-scale industrial production of AgNps.


Assuntos
Química Verde/métodos , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Prata/química , Sacarose/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Hidróxido de Sódio/química , Análise Espectral , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...