Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(8): 14490-14505, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859392

RESUMO

This paper presents a theoretical and experimental characterization of an instability phenomenon observed in single-frequency fiber amplifiers when the frequency of the seed laser is modulated. The instability manifests itself as fluctuating elastic back-reflections that occur only when the frequency is decreasing with time. The theory is a generalization of a coupled-mode model developed for a single-frequency fiber amplifier back-seeded with a constant frequency shift relative to the main signal. It can explain most observed features of the experiments in a qualitative and semi-quantitative way. Open questions and directions for further developments are also discussed.

2.
Sci Rep ; 12(1): 10590, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732808

RESUMO

In this study, for the first time, a Photoacoustic Microscopy instrument driven by a single optical source operating over a wide spectral range (475-2400 nm), covering slightly more than two octaves is demonstrated. Xenopus laevis tadpoles were imaged in vivo using the whole spectral range of 2000 nm of a supercontinuum optical source, and a novel technique of mapping absorbers is also demonstrated, based on the supposition that only one chromophore contributes to the photoacoustic signal of each individual voxel in the 3D photoacoustic image. By using a narrow spectral window (of 25 nm bandwidth) within the broad spectrum of the supercontinuum source at a time, in vivo hyper-spectral Photoacoustic images of tadpoles are obtained. By post-processing pairs of images obtained using different spectral windows, maps of five endogenous contrast agents (hemoglobin, melanin, collagen, glucose and lipids) are produced.


Assuntos
Microscopia , Técnicas Fotoacústicas , Imageamento Tridimensional , Microscopia/métodos , Técnicas Fotoacústicas/métodos , Análise Espectral
3.
Opt Lett ; 47(21): 5497-5500, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219253

RESUMO

We report on the observation of unstable two-wave mixing in a Yb-doped optical fiber amplifier induced by frequency modulation of a single-frequency laser. What is believed to be a reflection of the main signal experiences a gain much higher than that provided by the optical pumping and potentially limits power scaling under frequency modulation. We propose an explanation for the effect based on the dynamic population and refractive index gratings formed by the interference between the main signal and its slightly frequency-detuned reflection.

4.
Photoacoustics ; 18: 100163, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32042589

RESUMO

Among the numerous endogenous biological molecules, information on lipids is highly coveted for understanding both aspects of developmental biology and research in fatal chronic diseases. Due to the pronounced absorption features of lipids in the extended near-infrared region (1650-1850 nm), visualisation and identification of lipids become possible using multi-spectral photoacoustic (optoacoustic) microscopy. However, the spectroscopic studies in this spectral region require lasers that can produce high pulse energies over a broad spectral bandwidth to efficiently excite strong photoacoustic signals. The most well-known laser sources capable of satisfying the multi-spectral photoacoustic microscopy requirements (tunability and pulse energy) are tunable nanosecond optical parametric oscillators. However, these lasers have an inherently large footprint, thus preventing their use in compact microscopy systems. Besides, they exhibit low-repetition rates. Here, we demonstrate a compact all-fibre, high pulse energy supercontinuum laser that covers a spectral range from 1440 to 1870 nm with a 7 ns pulse duration and total energy of 18.3 µJ at a repetition rate of 100 kHz. Using the developed high-pulse energy source, we perform multi-spectral photoacoustic microscopy imaging of lipids, both ex vivo on adipose tissue and in vivo to study the development of Xenopus laevis tadpoles, using six different excitation bands over the first overtone transition of C-H vibration bonds (1650-1850 nm).

5.
Opt Lett ; 41(12): 2743-6, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27304278

RESUMO

We report the usefulness of a single all-fiber-based supercontinuum (SC) source for combined photoacoustic microscopy (PAM) and optical coherence tomography (OCT). The SC light is generated by a tapered photonic crystal fiber pumped by a nanosecond pulsed master oscillator power amplifier at 1064 nm. The spectrum is split into a shorter wavelength band (500-800 nm) for single/multi-spectral PAM and a longer wavelength band (800-900 nm) band for OCT. In vivo mouse ear imaging was achieved with an integrated dual-modality system. We further demonstrated its potential for spectroscopic photoacoustic imaging by doing multispectral measurements on retinal pigment epithelium and blood samples with 15-nm linewidth.

6.
J Biomed Opt ; 21(6): 61005, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26836298

RESUMO

We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150 nJ/10 nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Aumento da Imagem/instrumentação , Iluminação/instrumentação , Microscopia/instrumentação , Técnicas Fotoacústicas/instrumentação , Cristalização , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...