Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(22): 226801, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33315425

RESUMO

We performed x-ray magnetic circular dichroism (XMCD) measurements on heterostructures comprising topological insulators (TIs) of the (Bi,Sb)_{2}(Se,Te)_{3} family and the magnetic insulator EuS. XMCD measurements allow us to investigate element-selective magnetic proximity effects at the very TI/EuS interface. A systematic analysis reveals that there is neither significant induced magnetism within the TI nor an enhancement of the Eu magnetic moment at such interface. The induced magnetic moments in Bi, Sb, Te, and Se sites are lower than the estimated detection limit of the XMCD measurements of ∼10^{-3} µ_{B}/at.

2.
Phys Rev Lett ; 125(14): 147201, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064528

RESUMO

The resonant enhancement of mechanical and optical interaction in optomechanical cavities enables their use as extremely sensitive displacement and force detectors. In this Letter, we demonstrate a hybrid magnetometer that exploits the coupling between the resonant excitation of spin waves in a ferromagnetic insulator and the resonant excitation of the breathing mechanical modes of a glass microsphere deposited on top. The interaction is mediated by magnetostriction in the ferromagnetic material and the consequent mechanical driving of the microsphere. The magnetometer response thus relies on the spectral overlap between the ferromagnetic resonance and the mechanical modes of the sphere, leading to a peak sensitivity of 850 pT Hz^{-1/2} at 206 MHz when the overlap is maximized. By externally tuning the ferromagnetic resonance frequency with a static magnetic field, we demonstrate sensitivity values at resonance around a few nT Hz^{-1/2} up to the gigahertz range. Our results show that our hybrid system can be used to build a high-speed sensor of oscillating magnetic fields.

3.
Phys Rev Lett ; 108(17): 176602, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22680889

RESUMO

In combining spin- and symmetry-resolved photoemission, magnetotransport measurements and ab initio calculations we detangled the electronic states involved in the electronic transport in Fe(1-x)Co(x)(001)/MgO/Fe(1-x)Co(x)(001) magnetic tunnel junctions. Contrary to previous theoretical predictions, we observe a large reduction in TMR (from 530 to 200% at 20 K) for Co content above 25 atomic% as well as anomalies in the conductance curves. We demonstrate that these unexpected behaviors originate from a minority spin state with Δ(1) symmetry that exists below the Fermi level for high Co concentration. Using angle-resolved photoemission, this state is shown to be a two-dimensional state that occurs at both Fe(1-x)Co(x)(001) free surface, and more importantly at the interface with MgO. The combination of this interface state with the peculiar density of empty states due to chemical disorder allows us to describe in details the complex conduction behavior in this system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...