Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breast Cancer (Auckl) ; 14: 1178223420934447, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612361

RESUMO

BACKGROUND: Triple-negative breast cancer is an aggressive type of breast cancer with high risk of recurrence. It is still poorly understood and lacks any targeted therapy, which makes it difficult to treat. Thus, it is important to understand the underlying mechanisms and pathways that are dysregulated in triple-negative breast cancer. METHODS: To investigate the role of mitochondria in triple-negative breast cancer progression, we analysed previously reported gene expression data from triple-negative breast cancer cybrids with SUM-159 as the nuclear donor cell and SUM-159 or A1N4 (c-SUM-159, c-A1N4) as the mitochondrial donor cells and with 143B as the nuclear donor cell and MCF-10A or MDA-MB-231 (c-MCF-10A, c-MDA-MB-231) as the mitochondrial donor cells. The role of potential biomarkers in cell proliferation and migration was examined in SUM-159 and MDA-MB-231 cells using sulforhodamine B and wound healing assays. RESULTS: Rank product analysis of cybrid gene expression data identified 149 genes which were significantly up-regulated in the cybrids with mitochondria from the cancer cell line. Analysis of previously reported breast tumour gene expression datasets confirmed 9 of the 149 genes were amplified, up-regulated, or down-regulated in more than 10% of the patients. The genes included NDRG1, PVT1, and EXT1, which are co-located in cytoband 8q24, which is frequently amplified in breast cancer. NDRG1 showed the largest down-regulation in the cybrids with benign mitochondria and was associated with poor prognosis in a breast cancer clinical dataset. Knockdown of NDRG1 expression significantly decreased proliferation of SUM-159 triple-negative breast cancer cells. CONCLUSIONS: These results indicate that mitochondria-regulated nuclear gene expression helps breast cancer cells survive and proliferate, consistent with previous work focusing on an Src gene signature which is mitochondria regulated and drives malignancy in breast cancer cybrids. This is the first study to show that mitochondria in triple-negative breast cancer mediate significant up-regulation of a number of genes, and silencing of NDRG1 leads to significant reduction in proliferation.

2.
Radiat Oncol ; 14(1): 64, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30987655

RESUMO

BACKGROUND: Radiotherapy plays an important role in the multimodal treatment of breast cancer. The response of a breast tumour to radiation depends not only on its innate radiosensitivity but also on tumour repopulation by cells that have developed radioresistance. Development of effective cancer treatments will require further molecular dissection of the processes that contribute to resistance. METHODS: Radioresistant cell lines were established by exposing MDA-MB-231, MCF-7 and ZR-751 parental cells to increasing weekly doses of radiation. The development of radioresistance was evaluated through proliferation and colony formation assays. Phenotypic characterisation included migration and invasion assays and immunohistochemistry. Transcriptomic data were also generated for preliminary hypothesis generation involving pathway-focused analyses. RESULTS: Proliferation and colony formation assays confirmed radioresistance. Radioresistant cells exhibited enhanced migration and invasion, with evidence of epithelial-to-mesenchymal-transition. Significantly, acquisition of radioresistance in MCF-7 and ZR-751 cell lines resulted in a loss of expression of both ERα and PgR and an increase in EGFR expression; based on transcriptomic data they changed subtype classification from their parental luminal A to HER2-overexpressing (MCF-7 RR) and normal-like (ZR-751 RR) subtypes, indicating the extent of phenotypic changes and cellular plasticity involved in this process. Radioresistant cell lines derived from ER+ cells also showed a shift from ER to EGFR signalling pathways with increased MAPK and PI3K activity. CONCLUSIONS: This is the first study to date that extensively describes the development and characterisation of three novel radioresistant breast cancer cell lines through both genetic and phenotypic analysis. More changes were identified between parental cells and their radioresistant derivatives in the ER+ (MCF-7 and ZR-751) compared with the ER- cell line (MDA-MB-231) model; however, multiple and likely interrelated mechanisms were identified that may contribute to the development of acquired resistance to radiotherapy.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Raios gama , Tolerância a Radiação , Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Movimento Celular , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Humanos , Invasividade Neoplásica , Radiossensibilizantes/farmacologia , Transdução de Sinais , Sulfonamidas/farmacologia , Células Tumorais Cultivadas
3.
Cancer Biol Med ; 15(4): 375-388, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30766749

RESUMO

Ovarian cancer is the second most lethal gynecological cancer worldwide and while most patients respond to initial therapy, they often relapse with resistant disease. Human epidermal growth factor receptors (especially HER1/EGFR and HER2/ERBB2) are involved in disease progression; hence, strategies to inhibit their action could prove advantageous in ovarian cancer patients, especially in patients resistant to first line therapy. Monoclonal antibodies and tyrosine kinase inhibitors are two classes of drugs that act on these receptors. They have demonstrated valuable antitumor activity in multiple cancers and their possible use in ovarian cancer continues to be studied. In this review, we discuss the human epidermal growth factor receptor family; review emerging clinical studies on monoclonal antibodies and tyrosine kinase inhibitors targeting these receptors in ovarian cancer patients; and propose future research possibilities in this area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...