Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunol Res ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771487

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the activation of the immune response against self antigens. Numerous reproductive complications, including reduced birth rate and complications for the mother and the fetus during pregnancy, have been observed in women with SLE. In the present study, we aimed to investigate the effect of SLE development on oocyte meiosis in lupus-prone mice. Lupus-prone MRL/lpr mice were used for the experiments: disease-free (4 weeks of age) and sick (20 weeks of age, virgin and postpartum). The immune response was monitored by flow cytometry, ELISpot, ELISA, and histology. Oocytes were analyzed by fluorescence microscopy based on chromatin, tubulin, and actin structures. The lupus-prone MRL/lpr mice developed age-dependent symptoms of SLE with increased levels of various autoantibodies, proteinuria, and renal infiltrates and a tendency for the immune response to worsen with changes in cell populations and the cytokine profile. The number and quality of oocytes were also affected, and the successful pregnancy rate of MRL/lpr mice was limited to only 60%. Isolated oocytes showed severe structural changes in all studied groups. Systemic alterations in immune homeostasis in SLE affect the quality of developing oocytes, which is evident from a young age. The data obtained is in line with the trend of reduced fertility in lupus-prone MRL/lpr mice. The phenomenon can be explained by changes in the microenvironment of the relevant organs and close connection between ovulation and inflammatory processes.

2.
Immunology ; 172(2): 269-278, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430118

RESUMO

The aetiology and progression of systemic lupus erythematosus (SLE) resulted from a complex sequence of events generated both from genetic and epigenetic processes. In the current research, the effect of methyl-supplemented nutrition on the development of SLE was studied in the pristane-induced mouse model of the disease. The results clearly demonstrated decreased anti-dsDNA antibody and proteinuria levels, modulation of cytokines and protected renal structures in the group of treated mice. An additional increase in the DNA methylation of mouse B lymphocytes was also observed. The beneficial effect of the diet is due to the methyl-containing micronutrients with possible anti-inflammatory and immunomodulating effects on cell proliferation and gene expression. Since these components are responsible for maintaining the physiological methylation level of DNA, the results point to the central role of methylation processes in environmentally triggered lupus. As nutrition represents one of the major epigenetic factors, these micronutrients may be considered novel agents with significant therapeutic outcomes.


Assuntos
Anticorpos Antinucleares , Linfócitos B , Metilação de DNA , Suplementos Nutricionais , Modelos Animais de Doenças , Lúpus Eritematoso Sistêmico , Terpenos , Animais , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/induzido quimicamente , Camundongos , Anticorpos Antinucleares/imunologia , Anticorpos Antinucleares/sangue , Feminino , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citocinas/metabolismo , Epigênese Genética , Micronutrientes/administração & dosagem , Proteinúria/imunologia , Rim/imunologia , Rim/metabolismo , Rim/patologia , Rim/efeitos dos fármacos
3.
Immunobiology ; 227(6): 152282, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183628

RESUMO

Genetic susceptibility is necessary but not sufficient for systemic lupus erythematosus (SLE) to appear indicating that environmental factors are also key components in the disease onset. Aberrant DNA methylation profile positively correlates with the development of lupus-like disease in MRL/lpr mice. In the present study, we evaluate the effect of long term administration of methyl-rich diet in MRL mice. The results showed that supplemented diet decreased the levels of proteinuria and of anti-dsDNA antibodies and modulated cytokine profiles. Limited kidney failure and prevented development of skin lesions in MRL/lpr mice were another positive effects of the high-dose methyl diet. These data suggest that it is possible to modulate the disease course by altering the amount of particular dietary micronutrients and that nutrition-mediated changes in DNA methylation may have potential clinical relevance.


Assuntos
Lúpus Eritematoso Sistêmico , Camundongos , Animais , Camundongos Endogâmicos MRL lpr , Proteinúria , Dieta , Modelos Animais de Doenças
4.
J Reprod Immunol ; 148: 103370, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492566

RESUMO

Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by generation of autoantibodies and severe damage of various organs. The hormonal changes associated with pregnancy and especially estrogen might lead to damage of reproductive function and ovarian quality. We employed a pristane-induced lupus model of Balb/c mice which resembles human lupus in an attempt to follow oogenesis disruption during the disease progression. The integrity of cytoskeletal and chromatin structures was estimated in oocytes derived by hormonally stimulated ovulation in lupus mice and the results were compared with those from healthy mice. Chromatin, tubulin and actin structures in oocytes were detected by Hoechst 33258, anti-alpha-tubulin antibody and rhodamine-labeled phalloidin, respectively. All available meiotic spindles were analyzed - in immature (metaphase I) and mature oocytes (metaphase II). The total number of mature oocytes obtained from lupus mice was lower compared to healthy controls. The maturation rate was 9.8 % for lupus mice, 12.7 % for 7-month old controls, and 14.3 % for the young control mice (4 weeks old). Another major difference between the studied groups was the higher percentage of defective metaphase I spindles registered in oocytes derived from lupus mice (60 % normal spindles), while for the young and older controls this proportion was 86 % and 81 %, respectively. No such difference was registered for metaphase II spindles. For both metaphase I and metaphase II oocytes, the proportions of normal actin cap and chromosomal condensation were similar between the experimental groups.


Assuntos
Lúpus Eritematoso Sistêmico/fisiopatologia , Oogênese/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Metáfase , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Terpenos
5.
Monoclon Antib Immunodiagn Immunother ; 38(5): 201-208, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31603741

RESUMO

Type 1 diabetes mellitus is an autoimmune syndrome defined by the presence of autoreactive T and B cells, which results in destruction of insulin-producing beta cells. Autoantibodies against GAD65 (glutamic acid decarboxylase 65)-a membrane-bound enzyme on pancreatic beta cells, contribute to beta cells' destruction and the loss of pancreatic functions. Mouse FcγRIIb on B lymphocytes possesses an inhibitory effect on the activity of these cells. We hypothesized that it may be possible to suppress GAD65-specific B cells in mice with diabetes using chimeric molecules, containing an anti-FcγRIIb antibody, coupled to peptide B/T epitopes derived from the GAD65 protein. With these engineered chimeras, we expect to selectively co-cross-link the anti-GAD65-specific B cell receptor (BCR) and FcγRIIb, thus delivering a suppressive signal to the targeted B cells. An anti-FcγRIIb monoclonal antibody and two synthetic peptide epitopes derived from the GAD65 molecule were used for chimeras' construction. The suppressive activity of the engineered molecules was tested in vivo in mice with streptozotocin (STZ)-induced type 1 diabetes. These chimeric molecules exclusively bind disease-associated B cells by recognizing their GAD65-specific BCR and selectively deliver a strong inhibitory signal through their surface FcγRIIb receptors. A reduction in the number of anti-GAD65 IgG antibody-secreting plasmocytes and an increased percentage of apoptotic B lymphocytes were observed after treatment with protein-engineered antibodies of mice with STZ-induced type 1 diabetes.


Assuntos
Linfócitos B/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Epitopos/imunologia , Glutamato Descarboxilase/imunologia , Proteínas Recombinantes/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Especificidade de Anticorpos , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Autoanticorpos/metabolismo , Linfócitos B/imunologia , Linfócitos B/patologia , Glicemia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1 , Epitopos/genética , Feminino , Glutamato Descarboxilase/genética , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Ratos , Receptores de IgG/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
6.
J Exp Clin Cancer Res ; 37(1): 209, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165893

RESUMO

BACKGROUND: Angiogenesis has become an attractive target for cancer therapy. However, despite the initial success of anti-VEGF (Vascular endothelial growth factor) therapies, the overall survival appears only modestly improved and resistance to therapy often develops. Other anti-angiogenic targets are thus urgently needed. The predominant expression of the type I BMP (bone morphogenetic protein) receptor ALK1 (activin receptor-like kinase 1) in endothelial cells makes it an attractive target, and phase I/II trials are currently being conducted. ALK1 binds with strong affinity to two ligands that belong to the TGF-ß family, BMP9 and BMP10. In the present work, we addressed their specific roles in tumor angiogenesis, cancer development and metastasis in a mammary cancer model. METHODS: For this, we used knockout (KO) mice for BMP9 (constitutive Gdf2-deficient), for BMP10 (inducible Bmp10-deficient) and double KO mice (Gdf2 and Bmp10) in a syngeneic immunocompetent orthotopic mouse model of spontaneous metastatic breast cancer (E0771). RESULTS: Our studies demonstrate a specific role for BMP9 in the E0771 mammary carcinoma model. Gdf2 deletion increased tumor growth while inhibiting vessel maturation and tumor perfusion. Gdf2 deletion also increased the number and the mean size of lung metastases. On the other hand, Bmp10 deletion did not significantly affect the E0771 mammary model and the double deletion (Gdf2 and Bmp10) did not lead to a stronger phenotype than the single Gdf2 deletion. CONCLUSIONS: Altogether, our data show that in a tumor environment BMP9 and BMP10 play different roles and thus blocking their shared receptor ALK1 is maybe not appropriate. Indeed, BMP9, but not BMP10, acts as a quiescence factor on tumor growth, lung metastasis and vessel normalization. Our results also support that activating rather than blocking the BMP9 pathway could be a new strategy for tumor vessel normalization in order to treat breast cancer.


Assuntos
Receptores de Ativinas Tipo I/genética , Proteínas Morfogenéticas Ósseas/genética , Neoplasias da Mama/genética , Fator 2 de Diferenciação de Crescimento/genética , Neoplasias Mamárias Animais/genética , Receptores de Activinas Tipo II , Animais , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Humanos , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Metástase Neoplásica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...