Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Asian Biomed (Res Rev News) ; 17(4): 152-162, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37860676

RESUMO

Multiple myeloma (MM) is the second most common form of blood cancer characterized by clonal expansion of malignant plasma cells within the bone marrow. MM is a complex, progressive, and highly heterogeneous malignancy, which occurs via a multistep transformation process involving primary and secondary oncogenic events. Recent advances in molecular techniques have further expanded our understanding of the mutational landscape, clonal composition, and dynamic evolution patterns of MM. The first part of this review describes the key oncogenic events involved in the initiation and progression of MM, together with their prognostic impact. The latter part highlights the most prominent findings concerning genomic aberrations promoted by gene expression profiling (GEP) and next-generation sequencing (NGS) in MM. This review provides a concise understanding of the molecular pathogenesis of the MM genome and the importance of adopting emerging molecular technology in future clinical management of MM.

2.
Genes Genomics ; 44(8): 957-966, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35689754

RESUMO

BACKGROUND: Current advances in the molecular biology of multiple myeloma (MM) are not sufficient to fully delineate the genesis and development of this disease. OBJECTIVE: This study aimed to identify molecular targets underlying MM pathogenesis. METHODS: mRNA expression profiling for 29 samples (19 MM samples, 7 MM cell lines and 3 controls) were obtained using microarray. We evaluated the in vitro effects of RAD54L gene silencing on the proliferation, apoptosis and cell cycle distribution in KMS-28BM human MM cells using siRNA approach. Cell proliferation was determined by MTS assay while apoptosis and cell cycle distribution were analysed with flow cytometry. Gene and protein expression was evaluated using RT-qPCR and ELISA, respectively. RESULTS: Microarray results revealed a total of 5124 differentially expressed genes (DEGs), in which 2696 and 2428 genes were up-regulated and down-regulated in MM compared to the normal controls, respectively (fold change ≥ 2.0; P < 0.05). Up-regulated genes (RAD54L, DIAPH3, SHCBP1, SKA3 and ANLN) and down-regulated genes (HKDC1, RASGRF2, CYSLTR2) have never been reported in association with MM. Up-regulation of RAD54L was further verified by RT-qPCR (P < 0.001). In vitro functional studies revealed that RAD54L gene silencing significantly induced growth inhibition, apoptosis (small changes) and cell cycle arrest in G0/G1 phase in KMS-28BM (P < 0.05). Silencing of RAD54L also decreased its protein level (P < 0.05). CONCLUSIONS: This study has identified possible molecular targets underlying the pathogenesis of MM. For the first time, we reveal RAD54L as a potential therapeutic target in MM, possibly functioning in the cell cycle and checkpoint control.


Assuntos
Mieloma Múltiplo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica/métodos , Inativação Gênica , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo
3.
Genes Genomics ; 39(5): 533-540, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458781

RESUMO

Epigenetic changes have emerged as key causes in the development and progression of multiple myeloma (MM). In this study, global microRNA (miRNA) expression profiling were performed for 27 MM (19 specimens and 8 cell lines) and 3 normal controls by microarray. miRNA-targets were identified by integrating the miRNA expression profiles with mRNA expression profiles of the matched samples (unpublished data). Two miRNAs were selected for verification by RT-qPCR (miR-150-5p and miR-4430). A total of 1791 and 8 miRNAs were over-expressed and under-expressed, respectively in MM compared to the controls (fold change ≥2.0; p < 0.05). The miRNA-mRNA integrative analysis revealed inverse correlation between 5 putative target genes (RAD54L, CCNA2, CYSLTR2, RASGRF2 and HKDC1) and 15 miRNAs (p < 0.05). Most of the differentially expressed miRNAs are involved in survival, proliferation, migration, invasion and drug resistance in MM. Some have never been described in association with MM (miR-33a, miR-9 and miR-211). Interestingly, our results revealed 2 miRNAs, which are closely related to B cell differentiation (miR-150 and miR-125b). For the first time, we suggest that miR-150 might be potential negative regulator for two critical cell cycle control genes, RAD54L and CCNA2, whereas miR-125b potentially target RAS and CysLT signaling proteins, namely RASGRF2 and CYSLTR2, respectively. This study has enhanced our understanding on the pathobiology of MM and opens up new avenues for future research in myelomagenesis.

4.
Bosn J Basic Med Sci ; 16(4): 268-275, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27754828

RESUMO

Multiple myeloma (MM) is a malignancy of B lymphocytes or plasma cells. Our array-based comparative genomic hybridization findings revealed chromosomal gains at 7q22.3 and 1q42.3, where nicotinamide (NAM) phosphoribosyltransferase (NAMPT) and lysosomal trafficking regulator (LYST) genes are localized, respectively. This led us to further study the functions of these genes in myeloma cells. NAMPT is a key enzyme involved in nicotinamide adenine dinucleotide salvage pathway, and it is frequently overexpressed in human cancers. In contrast, little is known about the function of LYST in cancer. The expression of LYST is shown to affect lysosomal size, granule size, and autophagy in human cells. In this study, the effects of small interfering RNA (siRNA)-mediated silencing of NAMPT and LYST on cell proliferation and apoptosis were evaluated in RPMI 8226 myeloma cells. Transfection efficiencies were determined by quantitative real time reverse transcriptase PCR. Cell proliferation was determined using MTT assay, while apoptosis was analyzed with flow cytometry using Annexin V-fluorescein isothiocyanate/propidium iodide assay. The NAMPT protein expression in siRNA-treated cells was estimated by enzyme-linked immunosorbent assay. Our results showed that NAMPT and LYST were successfully knockdown by siRNA transfection (p < 0.05). NAMPT or LYST gene silencing significantly inhibited cell proliferation and induced apoptosis in RPMI 8226 cells (p < 0.05). Silencing of NAMPT gene also decreased NAMPT protein levels (p < 0.01). Our study demonstrated that NAMPT and LYST play pivotal roles in the molecular pathogenesis of MM. This is the first report describing the possible functions of LYST in myelomagenesis and its potential role as a therapeutic target in MM.


Assuntos
Apoptose/efeitos dos fármacos , Citocinas/genética , Inativação Gênica , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Nicotinamida Fosforribosiltransferase/genética , RNA Interferente Pequeno/farmacologia , Proteínas de Transporte Vesicular/genética , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Silenciamento de Genes , Terapia Genética , Humanos , Proteínas de Neoplasias/biossíntese
5.
Trop Biomed ; 23(1): 53-9, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17041552

RESUMO

Colorectal carcinoma ranks third among ten leading causes of cancer in Malaysia. The colorectal carcinoma tumourigenesis involves the inactivation of tumour suppressor genes, and activation of proto-oncogenes. The p53 is one of the tumour suppressor genes that is involved in the colorectal carcinogenesis. The p53 gene is located on human chromosome 17p13.1 and comprises of 11 exons. Deficiencies in the p53 gene can cause the cancerous cells to spread to distant organs such as liver, lungs, lymph nodes, spine and bone. The most common p53 abnormalities that can lead to the metastasis of colorectal tumours are mutation and deregulation of the gene. In this study, nine colorectal carcinoma samples were used to establish a simple and sensitive strategy in the study on in vivo p53 expression by using realtime LightCycler SYBR Green I technology.


Assuntos
Neoplasias Colorretais/genética , Genes p53 , Reação em Cadeia da Polimerase/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...