Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 178: 250-60, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21256198

RESUMO

During retinal development, the cell-fate of photoreceptors is committed long before maturation, which entails the expression of opsins and functional transduction of light. The mechanisms that delay the maturation of photoreceptors remain unknown. We have recently reported that immature photoreceptors express the LIM domain transcription factors Islet2 and Lim3, as well as the cell-surface glycoprotein axonin1 [Fischer et al., (2008a) J Comp Neurol 506:584-603]. As the photoreceptors mature to form outer segments and express photopigments, the expression of the Islet2, Lim3 and axonin1 is diminished. The purpose of this study was to investigate whether thyroid hormone (TH) influences the maturation of photoreceptors. We studied the maturation of photoreceptors across the gradient of maturity that exists in far peripheral regions of the post-natal chicken retina [Ghai et al., (2008) Brain Res 1192:76-89]. We found that intraocular injections of TH down-regulated Islet2, Lim3 and axonin1 in photoreceptors in far peripheral regions of the retina. By contrast, TH stimulated the up-regulation of red-green opsin, violet opsin, rhodopsin and calbindin in photoreceptors. We found a correlation between the onset of RLIM (RING finger LIM-domain binding protein) and down-regulation of Islet2 and Lim3 in maturing photoreceptors; RLIM is known to interfere with the transcriptional activity of LIM-domain transcription factors. We conclude that TH stimulates the maturation of photoreceptors in the avian retina. We propose that TH inhibits the expression of Islet2 and Lim3, which thereby permits photoreceptor maturation and the onset of photopigment-expression.


Assuntos
Células Fotorreceptoras de Vertebrados/metabolismo , Retina/crescimento & desenvolvimento , Tiroxina/fisiologia , Animais , Calbindinas , Galinhas , Contactina 2/metabolismo , Regulação para Baixo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Injeções Intraoculares , Proteínas com Homeodomínio LIM , Opsinas/biossíntese , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Retina/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Tiroxina/administração & dosagem , Fatores de Transcrição/metabolismo , Regulação para Cima/fisiologia
2.
Neuroscience ; 169(3): 1376-91, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20538044

RESUMO

Guanine nucleotide-binding protein beta3 (GNB3) is an isoform of the beta subunit of the heterotrimeric G protein second messenger complex that is commonly associated with transmembrane receptors. The presence of GNB3 in photoreceptors, and possibly bipolar cells, has been confirmed in murine, bovine and primate retinas [Lee RH, Lieberman BS, Yamane HK, Bok D, Fung BK (1992) J Biol Chem 267:24776-24781; Peng YW, Robishaw JD, Levine MA, Yau KW (1992) Proc Natl Acad Sci U S A 89:10882-10886; Huang L, Max M, Margolskee RF, Su H, Masland RH, Euler T (2003) J Comp Neurol 455:1-10]. Studies have indicated that a mutation in the GNB3 gene causes progressive retinopathy and globe enlargement (RGE) in chickens. The goals of this study were to (1) examine the expression pattern of GNB3 in wild-type and RGE mutant chickens, (2) characterize the types of bipolar cells that express GNB3 and (3) examine whether the expression of GNB3 in the retina is conserved across vertebrate species. We find that chickens homozygous for the RGE allele completely lack GNB3 protein. We find that the pattern of expression of GNB3 in the retina is highly conserved across vertebrate species, including teleost fish (Carassius auratus), frogs (Xenopus laevis), chickens (Gallus domesticus), mice (Mus musculata), guinea-pigs (Cavia porcellus), dogs (Canis familiaris) and non-human primates (Macaca fasicularis). Regardless of the species, we find that GNB3 is expressed by Islet1-positive cone ON-bipolar cells and by cone photoreceptors. In some vertebrates, GNB3-immunoreactivity was observed in both rod and cone photoreceptors. A protein-protein alignment of GNB3 across different vertebrates, from fish to humans, indicates a high degree (>92%) of sequence conservation. Given that analogous types of retinal neurons express GNB3 in different species, we propose that the functions and the mechanisms that regulate the expression of GNB3 are highly conserved.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/biossíntese , Retina/metabolismo , Animais , Galinhas , Retina/embriologia , Retina/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...