Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36904448

RESUMO

Sepiolite clay is a natural filler particularly suitable to be used with polysaccharide matrices (e.g., in starch-based bio-nanocomposites), increasing their attractiveness for a wide range of applications, such as packaging. Herein, the effect of the processing (i.e., starch gelatinization, addition of glycerol as plasticizer, casting to obtain films) and of the sepiolite filler amount on the microstructure of starch-based nanocomposites was investigated by SS-NMR (solid-state nuclear magnetic resonance), XRD (X-ray diffraction) and FTIR (Fourier-transform infrared) spectroscopy. Morphology, transparency and thermal stability were then assessed by SEM (scanning electron microscope), TGA (thermogravimetric analysis) and UV-visible spectroscopy. It was demonstrated that the processing method allowed to disrupt the rigid lattice structure of semicrystalline starch and thus obtain amorphous flexible films, with high transparency and good thermal resistance. Moreover, the microstructure of the bio-nanocomposites was found to intrinsically depend on complex interactions among sepiolite, glycerol and starch chains, which are also supposed to affect the final properties of the starch-sepiolite composite materials.

2.
Langmuir ; 38(50): 15662-15671, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36480813

RESUMO

The present study reports on the synthesis of a new alkoxysilane-bearing light-responsive cinnamyl group and its application as a surface functionalization agent for the development of SiO2 nanoparticles (NPs) with photoreversible tails. In detail, cinnamic acid (CINN) was activated with N-hydroxysuccinimide (NHS) to obtain the corresponding NHS-ester (CINN-NHS). Subsequently, the amine group of 3-aminopropyltriethoxysilane (APTES) was acylated with CINN-NHS leading to the generation of a novel organosilane, CINN-APTES, which was then exploited for decorating SiO2 NPs. The covalent bond to the silica surface was confirmed by solid state NMR, whereas thermogravimetric analysis unveiled a functionalization degree much higher compared to that achieved by a conventional double-step post-grafting procedure. In light of these intriguing results, the strategy was successfully extended to naturally occurring sepiolite fibers, widely employed as fillers in technological applications. Finally, a preliminary proof of concept of the photoreversibility of the obtained SiO2@CINN-APTES system has been carried out through UV diffuse reflectance. The overall outcomes prove the consistency and the versatility of the methodological protocol adopted, which appears promising for the design of hybrid NPs to be employed as building blocks for photoresponsive materials with the ability to change their molecular structure and subsequent properties when exposed to different light stimuli.


Assuntos
Nanopartículas Multifuncionais , Nanopartículas , Dióxido de Silício/química , Propilaminas/química , Nanopartículas/química
3.
Colloid Polym Sci ; 299(7): 1173-1188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720334

RESUMO

Several difunctional oligomers were synthesized by functionalizing perfluoropolyalkylether (PFPAE) chains with different vinyl ethers and epoxides end-groups. Due to their innate synthetic challenges and demanding purification protocols, the PFPAE derivatives were obtained in low yield and with an average functionality lower than 2. However, the functionalized PFPAE oligomers were successful in being used in photo-induced cationic polymerization processes, obtaining transparent and soft films. The influences of the fluorinated chains, and various end-groups on the photopolymerization process were investigated, as well their chemical stability, thermal degradation, and surface properties. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00396-021-04838-1.

4.
Molecules ; 26(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34443315

RESUMO

Nanocellulose was extracted from short bast fibers, from hemp (Cannabis sativa L.) plants harvested at seed maturity, non-retted, and mechanically decorticated in a defibering apparatus, giving non-aligned fibers. A chemical pretreatment with NaOH and HCl allowed the removal of most of the non-cellulosic components of the fibers. No bleaching was performed. The chemically pretreated fibers were then refined in a beater and treated with a cellulase enzyme, followed by mechanical defibrillation in an ultrafine friction grinder. The fibers were characterized by microscopy, infrared spectroscopy, thermogravimetric analysis and X-ray diffraction after each step of the process to understand the evolution of their morphology and composition. The obtained nanocellulose suspension was composed of short nanofibrils with widths of 5-12 nm, stacks of nanofibrils with widths of 20-200 nm, and some larger fibers. The crystallinity index was found to increase from 74% for the raw fibers to 80% for the nanocellulose. The nanocellulose retained a yellowish color, indicating the presence of some residual lignin. The properties of the nanopaper prepared with the hemp nanocellulose were similar to those of nanopapers prepared with wood pulp-derived rod-like nanofibrils.


Assuntos
Cannabis/química , Celulose/química , Produtos Agrícolas/química , Nanopartículas/química , Celulose/ultraestrutura , Nanopartículas/ultraestrutura , Tamanho da Partícula , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Difração de Raios X
5.
Polymers (Basel) ; 13(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34301050

RESUMO

Photoinduced processes have gained considerable attention in polymer science and have greatly implemented the technological developments of new products. Therefore, a large amount of research work is currently developed in this area: in this paper we illustrate the advantages of a chemistry driven by light, the present perspectives of the technology, and summarize some of our recent research works, honoring the memory of Prof. Aldo Priola who passed away in March 2021 and was one of the first scientists in Italy to contribute to the field.

6.
Colloid Polym Sci ; 299(3): 509-521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785978

RESUMO

New perfluoropolyalkylether (PFPAE) monomers, chain extended with different alkyl groups and functionalized with vinyl ether or epoxide end-groups, were employed, together with trimethylolpropane trivinyl ether or trimethylolpropane triglycidyl ether, to produce fluorinated copolymers. The photoinduced cationic polymerization was investigated, and the PFPAE-based copolymer properties were thoroughly characterized. Interesting surface properties and two different values of refractive index were observed: thus, these fluorinated copolymers can be suitable materials for the manufacture of self-cleaning coatings and optical waveguides.

7.
Molecules ; 25(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751133

RESUMO

Biobased monomers have been used to replace their petroleum counterparts in the synthesis of polymers that are aimed at different applications. However, environmentally friendly polymerization processes are also essential to guarantee greener materials. Thus, photoinduced polymerization, which is low-energy consuming and solvent-free, rises as a suitable option. In this work, eugenol-, isoeugenol-, and dihydroeugenol-derived methacrylates are employed in radical photopolymerization to produce biobased polymers. The polymerization is monitored in the absence and presence of a photoinitiator and under air or protected from air, using Real-Time Fourier Transform Infrared Spectroscopy. The polymerization rate of the methacrylate double bonds was affected by the presence and reactivity of the allyl and propenyl groups in the eugenol- and isoeugenol-derived methacrylates, respectively. These groups are involved in radical addition, degradative chain transfer, and termination reactions, yielding crosslinked polymers. The materials, in the form of films, are characterized by differential scanning calorimetry, thermogravimetric, and contact angle analyses.


Assuntos
Eugenol/química , Luz , Metacrilatos/química , Polimerização/efeitos dos fármacos , Estrutura Molecular , Análise Espectral , Termogravimetria
8.
Biomacromolecules ; 21(11): 4514-4521, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32510931

RESUMO

Biobased monomers derived from eugenol were copolymerized by emulsion polymerization to produce latexes for adhesive applications. Stable latexes containing ethoxy dihydroeugenyl methacrylate and ethoxy eugenyl methacrylate with high total solids content of 50 wt % were obtained and characterized. Latexes synthesis was carried out using a semibatch process, and latexes with particle diameters in the range of 159-178 nm were successfully obtained. Glass transition temperature values of the resulting polymers ranged between -32 and -28 °C. Furthermore, tack and peel measurements confirmed the possibility to use these latexes in adhesive applications.


Assuntos
Adesivos , Eugenol , Emulsões , Polimerização , Polímeros
10.
Mater Sci Eng C Mater Biol Appl ; 106: 110166, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753377

RESUMO

We propose a versatile method to evaluate the suitability of polymers for the fabrication of microfluidic devices for biomedical applications, based on the concept that the selection and the design of convenient materials should involve different properties depending on the final microfluidic application. Here polymerase chain reaction (PCR) is selected as biological model and target microfluidic reaction. A class of photocured siloxanes is introduced as device building polymers and copolymerization is adopted as strategy to finely tune and optimize the final material properties. All-polymeric flexible devices are easily fabricated exploiting the rapidity of the photopolymerization reaction: they resist to thermal cycles without leakage or de-bonding (i.e., without separation of different chip parts made of the same material bonded together), show very limited water swelling and permeability, are bioinert and prevent the inhibition of the biochemical reaction. PCR is thus successfully conducted in the photocured microfluidic devices made with a specifically designed siloxane copolymer.


Assuntos
Microfluídica/métodos , Polímeros/química , Reação em Cadeia da Polimerase , Siloxanas/química
11.
Materials (Basel) ; 13(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861780

RESUMO

Ultra-high exfoliation in water of a nanosized graphite (HSAG) was obtained thanks to the synergy between a graphene layer edge functionalized with hydroxy groups and a polymer such as chitosan (CS). The edge functionalization of graphene layers was performed with a serinol derivative containing a pyrrole ring, serinol pyrrole (SP). The adduct between CS and HSAG functionalized with SP was formed simply with a mortar and pestle, then preparing water dispersions stable for months in the presence of acetic acid. Simple casting of such dispersions on a glass support led to carbon papers. Aerogels were prepared through the freeze-dry procedure. Exfoliation was observed in both these families of composites and ultra-high exfoliation was documented in aerogels swollen in water. Carbon papers and aerogels were stable for months in solvents in a wide range of solubility parameter and in a pretty wide range of pH. By considering that a moderately functionalized nanographite was straightforwardly exfoliated in water in the presence of one of the most abundant biobased polymers, the obtained results pave the way for the simple and sustainable preparation of graphene-based nanocomposites. HSAG-SP/CS adducts were characterized by wide angle X-ray diffraction (WAXD), scanning and transmission electron microscopy (SEM, TEM and HRTEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Thermal stability of the composites was studied by thermogravimetric analysis (TGA) and their direct electrical conductivity with the four-point probe method.

12.
Molecules ; 24(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731566

RESUMO

Cardanol is a natural alkylphenolic compound derived from Cashew NutShell Liquid (CNSL), a non-food annually renewable raw material extracted from cashew nutshells. In the quest for sustainable materials, the curing of biobased monomers and prepolymers with environmentally friendly processes attracts increasing interest. Photopolymerization is considered to be a green technology owing to low energy requirements, room temperature operation with high reaction rates, and absence of solvents. In this work, we study the photocuring of a commercially available epoxidized cardanol, and explore its use in combination with microfibrillated cellulose (MFC) for the fabrication of fully biobased composites. Wet MFC mats were prepared by filtration, and then impregnated with the resin. The impregnated mats were then irradiated with ultraviolet (UV) light. Fourier Transform InfraRed (FT-IR) spectroscopy was used to investigate the photocuring of the epoxidized cardanol, and of the composites. The thermomechanical properties of the composites were assessed by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. We confirmed that fully cured composites could be obtained, although a high photoinitiator concentration was needed, possibly due to a side reaction of the photoinitiator with MFC.


Assuntos
Celulose/química , Microfibrilas/química , Fenóis/química , Solventes/química , Anacardium/química , Celulose/síntese química , Compostos de Epóxi/química , Espectroscopia de Infravermelho com Transformada de Fourier
13.
ACS Appl Mater Interfaces ; 11(27): 24544-24551, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199611

RESUMO

The present work proposes a versatile and efficient method to fabricate rubber nanofiber membranes with a controlled morphology and tailored functionality, based on the application of photoinduced thiol-ene cross-linking reactions to electrospun mats. Besides preventing the polymer cold flow and freezing the structure obtained by electrospinning, the photocuring step finely controls the morphology of the nanofiber mats, in terms of the fiber diameter up to the nanometer range and of the membrane porosity. Nanofiber membranes are also made chemically resistant, while retaining their flexibility. Finally, the proposed approach allows imparting specific functionalities to the rubber nanofibers: the type and concentration of the functional groups can be precisely tuned by changing process parameters (i.e., thiol/ene stoichiometric ratio and irradiation dose). Active chemical groups that remain available on the surface of the nanofibers can be used for further material modifications, as here proven by two target reactions. This key result is also demonstrated with electrospun membranes embedded into a microfluidic chip, opening the way to advanced functional flexible devices.

14.
Carbohydr Polym ; 217: 144-151, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31079670

RESUMO

Photo-crosslinked nanofiber mats containing chitosan were obtained through the versatile and promising technology of electrospinning. Due to the challenging processability of chitosan by electrospinning because of its stiffness and polycationic nature, it was blended with easily-spinnable poly(ethylene oxide). The optimum conditions for electrospinning of chitosan/poly(eyhylene oxide) (CS/PEO) blends were selected for further characterization and investigation: the composition of CS/PEO 70/30 mass fraction was chosen as it allowed to produce uniform and defect free electrospun mats formed by fibers with an average diameter of 270 nm. In order to improve the physico-chemical properties (in particular the stability and water resistance) of the electrospun mats, electrospinning was coupled with the fast and eco-friendly technique of photo-crosslinking. The photo-curing reaction of the CS/PEO fibers, as well as the morphology, thermal properties and water resistance of the electrospun mats before and after application of UV irradiation, were investigated. The photo-crosslinking process was optimized in order to fabricate CS/PEO electrospun mats which are resistant to water and thus can enlarge the application of such membranes, especially in biomedical, filtration and food industries.

15.
Nanomaterials (Basel) ; 9(1)2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30598041

RESUMO

The mechanism for the functionalization of graphene layers with pyrrole compounds was investigated. Liquid 1,2,5-trimethylpyrrole (TMP) was heated in air in the presence of a high surface area nanosized graphite (HSAG), at temperatures between 80 °C and 180 °C. After the thermal treatments solid and liquid samples, separated by centrifugation, were analysed by means of Raman, Fourier Transform Infrared (FT-IR) spectroscopy, X-Rays Photoelectron Spectroscopy (XPS) and ¹H-Nuclear Magnetic Resonance (¹H NMR) spectroscopy and High Resolution Transmission Electron Microscopy (HRTEM). FT-IR spectra were interpreted with the support of Density Functional Theory (DFT) quantum chemical modelling. Raman findings suggested that the bulk structure of HSAG remained substantially unaltered, without intercalation products. FT-IR and XPS spectra showed the presence of oxidized TMP derivatives on the solid adducts, in a much larger amount than in the liquid. For thermal treatments at T ≥ 150 °C, IR spectral features revealed not only the presence of oxidized products but also the reaction of intra-annular double bond of TMP with HSAG. XPS spectroscopy showed the increase of the ratio between C(sp²)N bonds involved in the aromatic system and C(sp³)N bonds, resulting from reaction of the pyrrole moiety, observed while increasing the temperature from 130 °C to 180 °C. All these findings, supported by modeling, led to hypothesize a cascade reaction involving a carbocatalyzed oxidation of the pyrrole compound followed by Diels-Alder cycloaddition. Graphene layers play a twofold role: at the early stages of the reaction, they behave as a catalyst for the oxidation of TMP and then they become the substrate for the cycloaddition reaction. Such sustainable functionalization, which does not produce by-products, allows us to use the pyrrole compounds for decorating sp² carbon allotropes without altering their bulk structure and smooths the path for their wider application.

16.
RSC Adv ; 8(57): 32664-32671, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-35547709

RESUMO

α,ß-unsaturated esters are usually synthesized for polymer applications. However, the addition of maleate (cis-configuration) to a fluorinated moiety is challenging due to its potential isomerization during esterification. Various synthetic routes were attempted and led to very low conversion or side-products. The immiscibility of both reagents combined with an easy isomerization or attack on the double bond were potential explanations. In this paper, the synthesis of maleates oligo(hexafluoropropylene oxide) is reported by Steglich esterification and the reaction conditions are discussed depending on the molecular weight of the fluorinated moieties. After UV-curing, hydrophobic polymers were obtained by copolymerization with vinyl ethers by electron acceptor-donor systems.

17.
Adv Mater ; 28(19): 3711, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27167030

RESUMO

On page 3712, E. Fantino, A. Chiappone, and co-workers fabricate conductive 3D hybrid structures by coupling the photo-reduction of metal precursors with 3D printing technology. The generated structures consist of metal nanoparticles embedded in a polymer matrix shaped into complex multilayered architectures. 3D conductive structures are fabricated with a digital light-processing printer incorporating silver salt into photocurable formulations.

18.
Adv Mater ; 28(19): 3712-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26992060

RESUMO

Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system.

19.
Chem Rev ; 115(16): 8835-66, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26237034
20.
Adv Mater ; 27(31): 4560-5, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26173099

RESUMO

The oxygen inhibition of UV curable polymers is exploited in novel technology for the fabrication of patterns and closed devices. Multiscale structures with thicknesses ranging from few micro-meters to millimeters are rapidly fabricated. Multipolymeric and multifunctional structures are also prepared: adequately choosing the material of each layer, a set of different properties is arranged in the same device.


Assuntos
Microtecnologia/métodos , Oxigênio/química , Polímeros/química , Polímeros/efeitos da radiação , Raios Ultravioleta , Interações Hidrofóbicas e Hidrofílicas , Dispositivos Lab-On-A-Chip , Microscopia Eletrônica de Varredura , Imagem Óptica , Processos Fotoquímicos , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...