Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 42(11): e2100087, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33876523

RESUMO

Shaping liquid crystals (LCs) into arrays of defect patterns enables the design of composite materials with new stimuli-responsive properties. Self-assembled defect assemblies that may arise in layered smectic A (SmA) LCs such as focal conic domains (FCDs), exhibit remarkable optical features and abilities for ordering nanoparticles. However, such SmA defect patterns are essentially electrically irreversible, which currently limits their adjustability in a dynamic way. Here, in situ polymerization of the texture of SmA FCDs allows transferring them into more electrically responsive LC phases, such as nematic, making possible a dynamic switch between different textural and optical states of FCDs in a reversible manner with voltage. Moreover, the method readily enables to program the operating temperature range of the polymer/LC composite from its chemical composition, adapting the system to various potential uses. This approach may increment new applications of SmA defect patterns such as voltage-tunable privacy layers and may further inspire the design of LC-based nanostructured composite and hybrid materials with new functions that can be dynamically tuned with voltage.


Assuntos
Cristais Líquidos , Eletricidade , Polímeros
2.
Adv Colloid Interface Sci ; 284: 102262, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32956958

RESUMO

In this article, we review both theoretical models and experimental results on the motion of micro- and nano- particles that are close to a fluid interface or move in between two fluids. Viscous drags together with dissipations due to fluctuations of the fluid interface and its physicochemical properties affect strongly the translational and rotational drags of colloidal particles, which are subjected to Brownian motion in thermal equilibrium. Even if many theoretical and experimental investigations have been carried out, additional scientific efforts in hydrodynamics, statistical physics, wetting and colloid science are still needed to explain unexpected experimental results and to measure particle motion in time and space scales, which are not accessible so far.

3.
Soft Matter ; 15(26): 5220-5226, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31172164

RESUMO

By confining soft materials within tailored boundaries it is possible to design energy landscapes to address and control colloidal dynamics. This provides unique opportunities to create reconfigurable, hierarchically organized structures, a leading challenge in materials science. Example soft matter systems include liquid crystals. For instance, when nematic liquid crystals (NLCs) are confined in a vessel with undulated boundaries, bend and splay distortions can be used to position particles. Here we confine this system in a twist cell. We also study cholesteric liquid crystals, which have an "intrinsic" twist distortion which adds to the ones imposed by the solid boundaries. The cholesteric pitch competes with the other length scales in the system (colloid radius, vessel thickness, wavelength of boundary undulations), enriching the possible configurations. Depending on the pitch-to-radius and pitch-to-thickness ratios the interaction can be attractive or repulsive. By tuning the pitch (i.e. changing the concentration of the chiral dopant), it is possible to selectively promote or inhibit particle trapping at the docking sites.

4.
Nat Commun ; 9(1): 3841, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242158

RESUMO

The ability to dictate the motion of microscopic objects is an important challenge in fields ranging from materials science to biology. Field-directed assembly drives microparticles along paths defined by energy gradients. Nematic liquid crystals, consisting of rod-like molecules, provide new opportunities in this domain. Deviations of nematic liquid crystal molecules from uniform orientation cost elastic energy, and such deviations can be molded by bounding vessel shape. Here, by placing a wavy wall in a nematic liquid crystal, we impose alternating splay and bend distortions, and define a smoothly varying elastic energy field. A microparticle in this field displays a rich set of behaviors, as this system has multiple stable states, repulsive and attractive loci, and interaction strengths that can be tuned to allow reconfigurable states. Microparticles can transition between defect configurations, move along distinct paths, and select sites for preferred docking. Such tailored landscapes have promise in reconfigurable systems and in microrobotics applications.

5.
Phys Rev E ; 97(1-1): 012609, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29448484

RESUMO

Immediately before adsorption to a horizontal substrate, sinking polymer-coated colloids can undergo a complex sequence of landing, jumping, crawling, and rolling events. Using video tracking, we studied the soft adhesion to a horizontal flat plate of micron-size colloids coated by a controlled molar fraction f of the poly(lysine)-grafted-poly(N-isopropylacrylamide) (PLL-g-PNIPAM) which is a temperature-sensitive polymer. We ramp the temperature from below to above T_{c}=32±1^{∘}C, at which the PNIPAM polymer undergoes a transition, triggering attractive interaction between microparticles and surface. The adsorption rate, the effective in-plane (x-y) diffusion constant, and the average residence time distribution over z were extracted from the Brownian motion records during last seconds before immobilization. Experimental data are understood within a rate-equations-based model that includes aging effects and includes three populations: the untethered, the rolling, and the arrested colloids. We show that preadsorption dynamics casts a characteristic scaling function α(f) proportional to the number of available PNIPAM patches met by soft contact during Brownian rolling. In particular, the increase of in-plane diffusivity with increasing f is understood: The stickiest particles have the shortest rolling regime prior to arrest, so that their motion is dominated by the untethered phase.

6.
Phys Rev E ; 94(1-1): 012602, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27575174

RESUMO

We study the dynamics of individual polystyrene ellipsoids of different aspect ratios trapped at the air-water interface. Using particle tracking and in situ vertical scanning interferometry techniques we are able to measure translational drags and the protrusion in air of the ellipsoids. We report that translational drags on the ellipsoid are unexpectedly enhanced: despite the fact that a noticeable part of the ellipsoid is in air, drags are found larger than the bulk one in water.

7.
Nat Mater ; 14(9): 908-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26147846

RESUMO

The dynamics of colloidal particles at interfaces between two fluids plays a central role in microrheology, encapsulation, emulsification, biofilm formation, water remediation and the interface-driven assembly of materials. Common intuition corroborated by hydrodynamic theories suggests that such dynamics is governed by a viscous force lower than that observed in the more viscous fluid. Here, we show experimentally that a particle straddling an air/water interface feels a large viscous drag that is unexpectedly larger than that measured in the bulk. We suggest that such a result arises from thermally activated fluctuations of the interface at the solid/air/liquid triple line and their coupling to the particle drag through the fluctuation-dissipation theorem. Our findings should inform approaches for improved control of the kinetically driven assembly of anisotropic particles with a large triple-line-length/particle-size ratio, and help to understand the formation and structure of such arrested materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...