Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(11)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652563

RESUMO

While dysfunction and death of light-detecting photoreceptor cells underlie most inherited retinal dystrophies, knowledge of the species-specific details of human rod and cone photoreceptor cell development remains limited. Here, we generated retinal organoids carrying retinal disease-causing variants in NR2E3, as well as isogenic and unrelated controls. Organoids were sampled using single-cell RNA sequencing (scRNA-Seq) across the developmental window encompassing photoreceptor specification, emergence, and maturation. Using scRNA-Seq data, we reconstruct the rod photoreceptor developmental lineage and identify a branch point unique to the disease state. We show that the rod-specific transcription factor NR2E3 is required for the proper expression of genes involved in phototransduction, including rhodopsin, which is absent in divergent rods. NR2E3-null rods additionally misexpress several cone-specific phototransduction genes. Using joint multimodal single-cell sequencing, we further identify putative regulatory sites where rod-specific factors act to steer photoreceptor cell development. Finally, we show that rod-committed photoreceptor cells form and persist throughout life in a patient with NR2E3-associated disease. Importantly, these findings are strikingly different from those observed in Nr2e3 rodent models. Together, these data provide a road map of human photoreceptor development and leverage patient induced pluripotent stem cells to define the specific roles of rod transcription factors in photoreceptor cell emergence and maturation in health and disease.


Assuntos
Organoides , Receptores Nucleares Órfãos , Células Fotorreceptoras Retinianas Bastonetes , Humanos , Organoides/metabolismo , Organoides/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Retina/metabolismo , Retina/patologia , Retina/crescimento & desenvolvimento , Diferenciação Celular , Transdução de Sinal Luminoso/genética , Análise de Célula Única
2.
Exp Eye Res ; 238: 109728, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972750

RESUMO

The sodium iodate (NaIO3) model of increased oxidative stress recapitulates dry AMD features such as patchy RPE loss, secondary photoreceptors, and underlying choriocapillaris death, allowing longitudinal evaluation of the retinal structure. Due to the time- and dose-dependent degeneration observed in diverse animal models, this preclinical model has become one of the most studied models. The events leading to RPE cell death post- NaIO3 injection have been extensively studied, and here we have reviewed different modalities of cell death, including apoptosis, necroptosis, ferroptosis, and pyroptosis with a particular focus on findings associated with in vivo and in vitro NaIO3 studies on RPE cell death. Because the fundamental cause of vision loss in patients with dry AMD is the death of these same cells affected by NaIO3, studies using NaIO3 can provide valuable insights into RPE and photoreceptor cell death mechanisms and can help understand mechanisms behind RPE degeneration in AMD.


Assuntos
Apoptose , Epitélio Pigmentado da Retina , Animais , Humanos , Epitélio Pigmentado da Retina/metabolismo , Retina , Morte Celular
3.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076962

RESUMO

Somatic mitochondrial DNA (mtDNA) mutation accumulation has been observed in individuals with retinal degenerative disorders. To study the effects of aging and mtDNA mutation accumulation in the retina, a Polymerase gamma (POLG) deficiency model, the POLGD257A mutator mice (PolgD257A), was used. POLG is an enzyme responsible for regulating mtDNA replication and repair. Retinas of young and older mice with this mutation were analyzed in vivo and ex vivo to provide new insights into the contribution of age-related mitochondrial dysfunction due to mtDNA damage. Optical coherence tomography (OCT) image analysis revealed a decrease in retinal and photoreceptor thickness starting at 6 months of age in mice with the POLGD257A mutation compared to wild-type (WT) mice. Electroretinography (ERG) testing showed a significant decrease in all recorded responses at 6 months of age. Sections labeled with markers of different types of retinal cells, including cones, rods, and bipolar cells, exhibited decreased labeling starting at 6 months. However, electron microscopy analysis revealed differences in retinal pigment epithelium (RPE) mitochondria morphology beginning at 3 months. Interestingly, there was no increase in oxidative stress observed in the retina or RPE of POLGD257A mice. Additionally, POLGD257A RPE exhibited an accelerated rate of autofluorescence cytoplasmic granule formation and accumulation. Mitochondrial markers displayed decreased abundance in protein lysates obtained from retina and RPE samples. These findings suggest that the accumulation of mitochondrial DNA mutations leads to impaired mitochondrial function and accelerated aging, resulting in retinal degeneration.

4.
Exp Eye Res ; 229: 109433, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858249

RESUMO

Heparan-α-glucosaminide N-acetyltransferase (HGSNAT) participates in lysosomal degradation of heparan sulfate. Mutations in the gene encoding this enzyme cause mucopolysaccharidosis IIIC (MPS IIIC) or Sanfilippo syndrome type C. MPS IIIC patients exhibit progressive neurodegeneration, leading to dementia and death in early adulthood. Currently there is no approved treatment for MPS IIIC. Incidences of non-syndromic retinitis pigmentosa and early signs of night blindness are reported in some MPS IIIC patients, however the majority of ocular phenotypes are not well characterized. The goal of this study was to investigate retinal degeneration phenotype in the Hgsnat knockout mouse model of MPS IIIC and a cadaveric human MPS IIIC eye. Cone and rod photoreceptors in the eyes of homozygous 6-month-old Hgsnat knockout mice and their wild-type counterparts were analyzed using cone arrestin, S-opsin, M-opsin and rhodopsin antibodies. Histological observation was performed on the eye from a 35-year-old MPS IIIC donor. We observed a nearly 50% reduction in the rod photoreceptors density in the Hgsnat knockout mice compared to the littermate wild-type controls. Cone photoreceptor density was unaltered at this age. Severe retinal degeneration was also observed in the MPS IIIC donor eye. To our knowledge, this is the first report characterizing ocular phenotypes arising from deleterious variants in the Hgsnat gene associated with MPS IIIC clinical phenotype. Our findings indicate retinal manifestations may be present even before behavioral manifestations. Thus, we speculate that ophthalmological evaluations could be used as diagnostic indicators of early disease, progression, and end-point evaluation for future MPS IIIC therapies.


Assuntos
Mucopolissacaridose III , Degeneração Retiniana , Retinose Pigmentar , Animais , Camundongos , Humanos , Adulto , Lactente , Mucopolissacaridose III/genética , Mucopolissacaridose III/diagnóstico , Mucopolissacaridose III/patologia , Degeneração Retiniana/genética , Mutação , Camundongos Knockout , Acetiltransferases/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-38689597

RESUMO

Ophthalmic imaging instruments, including the confocal scanning laser ophthalmoscope and spectral-domain optical coherence tomography system, originally intended for revealing ocular microstructures in the human eye, have been deployed by vision researchers to evaluate the eyes of numerous small and large animal species for more than two decades. In this study, we have used these two instruments to obtain imaging data sequentially from the retinas of three prominent, widely used experimental mouse models to document changes induced by two contrasting vivarium lighting conditions. Mice studied include albino BALB/cJ and B6(Cg)-Tyrc-2J/J and pigmented C57Bl/6J. Mice were reared under dim light conditions until ~8 weeks of age where they underwent baseline imaging. Following, mice were returned to the dim vivarium or relocated to the top rack cage position in a standard vivarium. Mice were then followed for several months by ocular imaging to catalog the retinal dynamics as a function of long-term dim vs. elevated, standard vivarium lighting exposure levels. Upon exposure to elevated light levels, B6(Cg)-Tyrc-2J/J underwent similar changes as BALB/cJ in regard to photoreceptor outer segment shortening, photoreceptor layer proximal aspect hyperreflective changes, and the development of retinal infoldings and autofluorescent sub-retinal inflammatory monocyte infiltrate. Noteworthy, however, is that infoldings and infiltrate occurred at a slower rate of progression in B6(Cg)-Tyrc-2J/J vs. BALB/cJ. The photoreceptor outer nuclear layer thickness of BALB/cJ degenerated steadily following elevated light onset. In contrast, B6(Cg)-Tyrc-2J/J degeneration was unremarkable for many weeks before experiencing a noticeable change in the rate of degeneration that was concomitant with a plateau and decreasing trend in number of retinal infoldings and monocyte infiltrate. Pathological changes in C57Bl/6J mice were unremarkable for all imaging biomarkers assessed with exception to autofluorescent sub-retinal inflammatory monocyte infiltrate, which showed significant accumulation in dim vs. elevated light exposed mice following ~1 year of observation. These data were evaluated using Spearman's correlation and Predictive Power Score matrices to determine the best imaging optophysiological biomarkers for indicating vivarium light stress and light-induced photoreceptor degeneration. This study suggests that changes in proximal aspect hyperreflectivity, outer segment shortening, retinal infoldings and autofluorescent sub-retinal inflammatory monocyte infiltrate are excellent indicators of light stress and light-induced degeneration in albino B6(Cg)-Tyrc-2J/J and BALB/cJ mouse strains.

6.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077335

RESUMO

The retina and RPE cells are regularly exposed to chronic oxidative stress as a tissue with high metabolic demand and ROS generation. DJ-1 is a multifunctional protein in the retina and RPE that has been shown to protect cells from oxidative stress in several cell types robustly. Oxidation of DJ-1 cysteine (C) residues is important for its function under oxidative conditions. The present study was conducted to analyze the impact of DJ-1 expression changes and oxidation of its C residues on RPE function. Monolayers of the ARPE-19 cell line and primary human fetal RPE (hfRPE) cultures were infected with replication-deficient adenoviruses to investigate the effects of increased levels of DJ-1 in these monolayers. Adenoviruses carried the full-length human DJ-1 cDNA (hDJ) and mutant constructs of DJ-1, which had all or each of its three C residues individually mutated to serine (S). Alternatively, endogenous DJ-1 levels were decreased by transfection and transduction with shPARK7 lentivirus. These monolayers were then assayed under baseline and low oxidative stress conditions. The results were analyzed by immunofluorescence, Western blot, RT-PCR, mitochondrial membrane potential, and viability assays. We determined that decreased levels of endogenous DJ-1 levels resulted in increased levels of ROS. Furthermore, we observed morphological changes in the mitochondria structure of all the RPE monolayers transduced with all the DJ-1 constructs. The mitochondrial membrane potential of ARPE-19 monolayers overexpressing all DJ-1 constructs displayed a significant decrease, while hfRPE monolayers only displayed a significant decrease in their ΔΨm when overexpressing the C2S mutation. Viability significantly decreased in ARPE-19 cells transduced with the C53S construct. Our data suggest that the oxidation of C53 is crucial for regulating endogenous levels of ROS and viability in RPE cells.


Assuntos
Cisteína , Epitélio Pigmentado da Retina , Cisteína/metabolismo , Humanos , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo
7.
JCI Insight ; 7(18)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-35951427

RESUMO

Cub domain-containing protein 1 (CDCP1) is a protein that is highly expressed on the surface of many cancer cells. However, its distribution in normal tissues and its potential roles in nontumor cells are poorly understood. We found that CDCP1 is present on both human and mouse retinal pigment epithelial (RPE) cells. CDCP1-KO mice developed attenuated retinal inflammation in a passive model of autoimmune uveitis, with disrupted tight junctions and infiltrating T cells detected in RPE flat mounts from WT but not CDCP1-KO mice during EAU development. Mechanistically, we discovered that CDCP1 on RPE cells was upregulated by IFN-γ in vitro and after EAU induction in vivo. CD6 stimulation induced increased RPE barrier permeability of WT but not CDCP1-knockdown (CDCP1-KD) RPE cells, and activated T cells migrated through WT RPE monolayers more efficiently than the CDCP1-KD RPE monolayers. In addition, CD6 stimulation of WT but not the CDCP1-KD RPE cells induced massive stress fiber formation and focal adhesion disruption to reduce cell barrier tight junctions. These data suggest that CDCP1 on RPE cells interacts with CD6 on T cells to induce RPE cytoskeleton remodeling and focal adhesion disruption, which open up the tight junctions to facilitate T cell infiltration for the development of uveitis.


Assuntos
Antígenos de Neoplasias , Moléculas de Adesão Celular , Pigmentos da Retina , Uveíte , Animais , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Humanos , Inflamação/metabolismo , Camundongos , Retina/patologia , Pigmentos da Retina/metabolismo , Junções Íntimas/metabolismo , Uveíte/metabolismo , Uveíte/patologia
8.
Graefes Arch Clin Exp Ophthalmol ; 260(4): 1275-1288, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34714382

RESUMO

PURPOSE: The purpose of this study is to assess for histopathological changes within the retina and the choroid and determine the long-term sequelae of the SARS-CoV-2 infection. METHODS: Eyes from seven COVID-19-positive and six similar age-matched control donors with a negative test for SARS-CoV-2 were assessed. Globes were evaluated ex vivo with macroscopic, SLO and OCT imaging. Macula and peripheral regions were processed for Epon embedding and immunocytochemistry. RESULTS: Fundus analysis shows hemorrhagic spots and increased vitreous debris in several of the COVID-19 eyes compared to the controls. OCT-based measurements indicated an increased trend in retinal thickness in the COVID-19 eyes; however, the difference was not statistically significant. Histology of the retina showed presence of hemorrhages and central cystoid degeneration in several of the donors. Whole mount analysis of the retina labeled with markers showed changes in retinal microvasculature, increased inflammation, and gliosis in the COVID-19 eyes compared to the controls. The choroidal vasculature displayed localized changes in density and signs of increased inflammation in the COVID-19 samples. CONCLUSIONS: In situ analysis of the retinal tissue suggests that there are severe subclinical abnormalities that could be detected in the COVID-19 eyes. This study provides a rationale for evaluating the ocular physiology of patients that have recovered from COVID-19 infections to further understand the long-term effects caused by this virus.


Assuntos
COVID-19 , Macula Lutea , COVID-19/complicações , Corioide/patologia , Gliose/diagnóstico , Gliose/patologia , Humanos , Inflamação/diagnóstico , Inflamação/patologia , Retina , SARS-CoV-2 , Tomografia de Coerência Óptica
9.
Sci Adv ; 7(40): eabj3658, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586848

RESUMO

Long interspersed nuclear element-1 (L1)­mediated reverse transcription (RT) of Alu RNA into cytoplasmic Alu complementary DNA (cDNA) has been implicated in retinal pigmented epithelium (RPE) degeneration. The mechanism of Alu cDNA­induced cytotoxicity and its relevance to human disease are unknown. Here we report that Alu cDNA is highly enriched in the RPE of human eyes with geographic atrophy, an untreatable form of age-related macular degeneration. We demonstrate that the DNA sensor cGAS engages Alu cDNA to induce cytosolic mitochondrial DNA escape, which amplifies cGAS activation, triggering RPE degeneration via the inflammasome. The L1-extinct rice rat was resistant to Alu RNA­induced Alu cDNA synthesis and RPE degeneration, which were enabled upon L1-RT overexpression. Nucleoside RT inhibitors (NRTIs), which inhibit both L1-RT and inflammasome activity, and NRTI derivatives (Kamuvudines) that inhibit inflammasome, but not RT, both block Alu cDNA toxicity, identifying inflammasome activation as the terminal effector of RPE degeneration.

10.
Redox Biol ; 42: 101941, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33771513
11.
medRxiv ; 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33655272

RESUMO

PURPOSE: To assess for histopathological changes within the retina and the choroid and determine the long-term sequelae of the SARS-CoV-2 infection. DESIGN: Comparative analysis of human eyes. SUBJECTS: Eleven donor eyes from COVID-19 positive donors and similar age-matched donor eyes from patients with a negative test for SARS-CoV-2 were assessed. METHODS: Globes were evaluated ex-vivo with macroscopic, SLO and OCT imaging. Macula and peripheral regions were processed for epon-embedding and immunocytochemistry. MAIN OUTCOME MEASURES: Retinal thickness and histopathology, detection of SARS-CoV-2 Spike protein, changes in vascular density, gliosis, and degree of inflammation. RESULTS: Fundus analysis shows hemorrhagic spots and increased vitreous debris in several of the COVID-19 eyes compared to the control. OCT based measurements indicated an increased trend in retinal thickness in the COVID-19 eyes, however the difference was not statistically significant. Histology of the retina showed presence of hemorrhages and central cystoid degeneration in several of the donors. Whole mount analysis of the retina labeled with markers showed changes in retinal microvasculature, increased inflammation, and gliosis in the COVID-19 eyes compared to the controls. The choroidal vasculature displayed localized changes in density and signs of increased inflammation in the COVID-19 samples. CONCLUSIONS: In situ analysis of the retinal tissue suggested that there are severe subclinical abnormalities that could be detected in the COVID-19 eyes. This study provides a rationale for evaluating the ocular physiology of patients that have recovered from COVID-19 infections to further understand the long-term effects caused by this virus.

12.
Commun Biol ; 4(1): 161, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547385

RESUMO

Mutations in CLN3 lead to photoreceptor cell loss in CLN3 disease, a lysosomal storage disorder characterized by childhood-onset vision loss, neurological impairment, and premature death. However, how CLN3 mutations cause photoreceptor cell death is not known. Here, we show that CLN3 is required for phagocytosis of photoreceptor outer segment (POS) by retinal pigment epithelium (RPE) cells, a cellular process essential for photoreceptor survival. Specifically, a proportion of CLN3 in human, mouse, and iPSC-RPE cells localized to RPE microvilli, the site of POS phagocytosis. Furthermore, patient-derived CLN3 disease iPSC-RPE cells showed decreased RPE microvilli density and reduced POS binding and ingestion. Notably, POS phagocytosis defect in CLN3 disease iPSC-RPE cells could be rescued by wild-type CLN3 gene supplementation. Altogether, these results illustrate a novel role of CLN3 in regulating POS phagocytosis and suggest a contribution of primary RPE dysfunction for photoreceptor cell loss in CLN3 disease that can be targeted by gene therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Fagocitose , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Linhagem Celular , Terapia Genética , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Glicoproteínas de Membrana/genética , Microvilosidades/metabolismo , Microvilosidades/patologia , Chaperonas Moleculares/genética , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Lipofuscinoses Ceroides Neuronais/terapia , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais
13.
Front Cell Dev Biol ; 8: 573330, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154968

RESUMO

Best disease (BD), also known as vitelliform macular dystrophy, is an inherited disease of the central retina caused by more than 300 pathogenic variants in the BEST1 gene. The phenotype of BD is variable, and there are just a few reports on the histopathology of eyes from donors with BD. Here, we describe the histopathological comparison of donor's eyes from two patients with BD. Eyes obtained from 85-year-old (donor 1) and 65-year-old (donor 2) donors were fixed within 25 h postmortem. Perifoveal and peripheral retinal regions were processed for histology and immunocytochemistry using retinal-specific and retinal pigment epithelium (RPE)-specific antibodies. Three age-matched normal eyes were used as controls. DNA was obtained from donor blood samples. Sequence analysis of the entire BEST1 coding region was performed and identified a c.886A > C (p.Asn296His) variant in donor 1 and a c.602T > C (p.Ile201Thr) variant in donor 2; both mutations were heterozygous. Fundus examination showed that donor 1 displayed a macular lesion with considerable scarring while donor 2 displayed close to normal macular morphology. Our studies of histology and molecular pathology in the perifovea and periphery of these two BD donor eyes revealed panretinal abnormalities in both photoreceptors and RPE cellular levels in the periphery; donor 1 also displayed macular lesion. Our findings confirm the phenotypic variability of BD associated with BEST1 variants.

14.
Redox Biol ; 37: 101787, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33214125

RESUMO

Stargardt macular degeneration (STGD) is a central blinding disease caused by loss of or dysfunctional ABCA4 transporter in both photoreceptors and retinal pigment epithelial (RPE) cells. Toxic bisretinoid-lipofuscin buildup in the RPE cells is a pathological hallmark of STGD patients and its mouse model, the Abca4-/-. These vitamin A-derived fluorophores have been shown to induce oxidative stress, stimulate complement activity, and cause chronic inflammation of the RPE. In vivo modulation of complement regulatory pathway in the STGD mouse model has partially rescued the STGD phenotype suggesting that complement attack on the RPE is an important etiologic factor in disease pathogenesis. While bisretinoid-dependent complement activation was further evidenced in cultured RPE cells, this pathway has never been investigated directly in the context of RPE from STGD donor eyes. In the current study, we evaluate the complement reactivity in postmortem donor eyes of clinically diagnosed STGD patients. All three STGD donor eyes RPE displayed strong immunoreactivity for an antibody specific to 4-Hydroxynonenal, a lipid peroxidation byproduct. Also, unlike the control eyes, all three STGD donor eyes showed significantly increased membrane attack complex deposition on the RPE cells. In STGD eyes, increased MAC accumulation was mirrored by elevated C3 fragments internalized by the RPE and inversely correlated with the levels of complement factor H, a major complement regulatory protein. Here, we report the first direct evidence of RPE complement dysregulation as a causative factor in developing Stargardt phenotype.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Transportadores de Cassetes de Ligação de ATP , Animais , Humanos , Degeneração Macular/genética , Camundongos , Retina , Doença de Stargardt
15.
Redox Biol ; 37: 101623, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32826201

RESUMO

High levels of oxidative radicals generated by daily light exposure and high metabolic rate suggest that the antioxidant machinery of the retina and retinal pigment epithelium (RPE) is crucial for their survival. DJ-1 is a redox-sensitive protein that has been shown to have neuroprotective function in the brain in Parkinson's disease and other neurodegenerative diseases. Here, we analyzed the role of DJ-1 in the retina during oxidative stress and aging. We induced low-level oxidative stress in young (3-month-old) and old (15-month-old) C57BL/6J (WT) and DJ-1 knockout (KO) mice and evaluated effects in the RPE and retina. Absence of DJ-1 resulted in increased retinal dysfunction in response to low levels of oxidative stress. Our findings suggest that loss of DJ-1 affects the RPE antioxidant machinery, rendering it unable to combat and neutralize low-level oxidative stress, irrespective of age. Moreover, they draw a parallel to the retinal degeneration observed in AMD, where the occurrence of genetic variants may leave the retina and RPE unable to fight sustained, low-levels of oxidative stress.


Assuntos
Envelhecimento , Estresse Oxidativo , Retina , Epitélio Pigmentado da Retina , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Retina/metabolismo
16.
Redox Biol ; 37: 101681, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828705

RESUMO

Sorsby Fundus Dystrophy (SFD) is a rare inherited autosomal dominant macular degeneration caused by specific mutations in TIMP3. Patients with SFD present with pathophysiology similar to the more common Age-related Macular Degeneration (AMD) and loss of vision due to both choroidal neovascularization and geographic atrophy. Previously, it has been shown that RPE degeneration in AMD is due in part to oxidative stress. We hypothesized that similar mechanisms may be at play in SFD. The objective of this study was to evaluate whether mice carrying the S179C-Timp3 mutation, a variant commonly observed in SFD, showed increased sensitivity to oxidative stress. Antioxidant genes are increased at baseline in the RPE in SFD mouse models, but not in the retina. This suggests the presence of a pro-oxidant environment in the RPE in the presence of Timp3 mutations. To determine if the RPE of Timp3 mutant mice is more susceptible to degeneration when exposed to low levels of oxidative stress, mice were injected with low doses of sodium iodate. The RPE and photoreceptors in Timp3 mutant mice degenerated at low doses of sodium iodate, which had no effect in wildtype control mice. These studies suggest that TIMP3 mutations may result in a dysregulation of pro-oxidant-antioxidant homeostasis in the RPE, leading to RPE degeneration in SFD.


Assuntos
Degeneração Macular , Estresse Oxidativo , Epitélio Pigmentado da Retina , Animais , Humanos , Degeneração Macular/genética , Camundongos , Mutação , Estresse Oxidativo/genética , Retina , Inibidores Teciduais de Metaloproteinases , Inibidor Tecidual 4 de Metaloproteinase
17.
Invest Ophthalmol Vis Sci ; 61(8): 15, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32658960

RESUMO

Purpose: To describe the pathology of AMD in eyes with geographic atrophy (GA) using confocal scanning laser ophthalmoscopy (SLO) blue light autofluorescence (BAF), and near-infrared (IR) AF and to correlate it with the histology and immunohistochemistry analysis at the margins of the GA lesion. Methods: Enucleated, fixed eyes from seventeen donors with GA were imaged and analyzed by BAF-SLO, IRAF-SLO, and by fundus macroscopy (FM). Tissue from the margins of the GA lesions was cut and processed for resin embedding and histology or cryosectioning and fluorescence in the green and far-red channels, and immunohistochemistry to assess markers of inflammation. Isolated DNA from donors was genotyped for single nucleotide polymorphisms (SNPs) previously shown to be risk factors for the development and progression of AMD. Results: Around the leading edge of the GA lesions we observed hypertrophic RPE cells with cytoplasm filled with granules fluorescent both in the far-red and green-red channels; abundant microglia and macrophage; deposition of complement factor H (CFH) in Bruch's membrane (BM) and increased membrane attack complex (MAC) on RPE cells. Conclusions: Fluorescence imaging of cryosections of RPE cells around the leading edge of the GA lesions suggest that IRAF-SLO visualizes mostly melanin-related compounds. In addition, medium-size GA atrophy displayed the most significant changes in inflammation markers.


Assuntos
Lâmina Basilar da Corioide/patologia , Angiofluoresceinografia/métodos , Atrofia Geográfica/patologia , Oftalmoscopia/métodos , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Idoso , Idoso de 80 Anos ou mais , Feminino , Fundo de Olho , Humanos , Masculino
18.
Invest Ophthalmol Vis Sci ; 61(8): 27, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32692840

RESUMO

Purpose: The present study investigated retinal glia and choroidal vessels in flatmounts and sections from individuals with clinically diagnosed Stargardt disease (STGD). Methods: Eyes from three donors clinically diagnosed with STGD were obtained through the Foundation Fighting Blindness (FFB). Genetic testing was performed to determine the disease-causing mutations. Eyes were enucleated and fixed in 4% paraformaldehyde and 0.5% glutaraldehyde. After imaging, retinas were dissected and immunostained for glial fibrillary acidic protein, vimentin, and peanut agglutin. Following RPE removal, the choroid was immunostained with Ulex europaeus agglutinin lectin. For each choroid, the area of affected vasculature, percent vascular area, and choriocapillaris luminal diameters were measured. The retina from one donor was hemisected and cryopreserved or embedded in JB-4 for cross-section analysis. Results: Genetic testing confirmed the STGD diagnosis in donor 1, whereas a mutation in peripherin 2 was identified in donor 3. Genetic testing was not successful on donor 2. Therefore, only donor 1 can definitively be classified as having STGD. All donors had areas of RPE atrophy within the macular region, which correlated with underlying choriocapillaris loss. In addition, Müller cells formed pre- and subretinal membranes. Subretinal gliotic membranes correlated almost identically with RPE and choriocapillaris loss. Conclusions: Despite bearing different genetic mutations, all donors demonstrated choriocapillaris loss and Müller cell membranes correlating with RPE loss. Müller cell remodeling was most extensive in the donor with the peripherin mutation, whereas choriocapillaris loss was greatest in the confirmed STGD donor. This study emphasizes the importance of genetic testing when diagnosing macular disease.


Assuntos
Corioide , Células Ependimogliais/patologia , Testes Genéticos/métodos , Degeneração Macular , Retina/patologia , Doença de Stargardt , Transportadores de Cassetes de Ligação de ATP/genética , Idoso , Corioide/irrigação sanguínea , Corioide/patologia , Diagnóstico , Feminino , Humanos , Degeneração Macular/genética , Degeneração Macular/patologia , Masculino , Mutação , Periferinas/genética , Epitélio Pigmentado da Retina/patologia , Doença de Stargardt/genética , Doença de Stargardt/patologia
19.
Nanomedicine ; 28: 102205, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32305594

RESUMO

Choroidal neovascularization (CNV) is the abnormal growth of blood vessels that sprout from the choroid vasculature and grow beneath and into the retina. The newly formed blood vessels in CNV often leak blood and fluid which deteriorates vision over time, eventually leading to blindness. In the present study, we examined the efficacy of intravenously injected gold nanoparticles in the laser-induced CNV animal model. Using optical coherence tomography (OCT) and fluorescein angiography, we evaluated CNV lesions longitudinally, over a period of 21 days, with and without nanoparticle treatment. Intravenously injected low concentration of bare gold nanoparticles showed significant anti-angiogenic properties by suppressing CNV development and progression. The treatment group showed significantly decreased fluorescein leakage at the CNV site compared to vehicle injected control mice. OCT assisted CNV volume measurement at all time points showed a significant reduction in lesion size in the treatment group compared with controls.


Assuntos
Neovascularização de Coroide/tratamento farmacológico , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Tomografia de Coerência Óptica/métodos , Inibidores da Angiogênese/química , Inibidores da Angiogênese/uso terapêutico , Animais , Feminino , Angiofluoresceinografia/métodos , Masculino , Camundongos
20.
Cells ; 9(3)2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143276

RESUMO

Sorsby's fundus dystrophy (SFD) is an inherited blinding disorder caused by mutations in the tissue inhibitor of metalloproteinase-3 (TIMP3) gene. The SFD pathology of macular degeneration with subretinal deposits and choroidal neovascularization (CNV) closely resembles that of the more common age-related macular degeneration (AMD). The objective of this study was to gain further insight into the molecular mechanism(s) by which mutant TIMP3 induces CNV. In this study we demonstrate that hyaluronan (HA), a large glycosaminoglycan, is elevated in the plasma and retinal pigment epithelium (RPE)/choroid of patients with AMD. Mice carrying the S179C-TIMP3 mutation also showed increased plasma levels of HA as well as accumulation of HA around the RPE in the retina. Human RPE cells expressing the S179C-TIMP3 mutation accumulated HA apically, intracellularly and basally when cultured long-term compared with cells expressing wildtype TIMP3. We recently reported that RPE cells carrying the S179C-TIMP3 mutation have the propensity to induce angiogenesis via basic fibroblast growth factor (FGF-2). We now demonstrate that FGF-2 induces accumulation of HA in RPE cells. These results suggest that the TIMP3-MMP-FGF-2-HA axis may have an important role in the pathogenesis of CNV in SFD and possibly AMD.


Assuntos
Neovascularização de Coroide/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Degeneração Macular/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Células Cultivadas , Neovascularização de Coroide/genética , Humanos , Degeneração Macular/genética , Degeneração Macular/patologia , Mutação/genética , Retina/metabolismo , Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...