Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38610357

RESUMO

Nanoparticles of MgSb2O6 were synthesized using a microwave-assisted wet chemistry method, followed by calcination at 700 °C. Their ability to detect different concentrations of propane gas (C3H8) at various operating voltages was evaluated. The material's crystalline phase was identified using X-ray powder diffraction (XRD). The morphology was analyzed by scanning electron microscopy (SEM), finding bar- and polyhedron-type geometries. Through transmission electron microscopy (TEM), we found particle sizes of 8.87-99.85 nm with an average of ~27.63 nm. Employing ultraviolet-visible (UV-Vis) spectroscopy, we found a band gap value of ~3.86 eV. Thick films made with MgSb2O6 powders were exposed to atmospheres containing 150, 300, 400, and 600 ppm of propane gas for dynamic testing. The time-dependent sensitivities were ~61.09, ~88.80, ~97.65, and ~112.81%. In addition, tests were carried out at different operating voltages (5-50 V), finding very short response and recovery times (~57.25 and ~18.45 s, respectively) at 50 V. The excellent dynamic response of the MgSb2O6 is attributed mainly to the synthesis method because it was possible to obtain nanometric-sized particles. Our results show that the trirutile-type oxide MgSb2O6 possesses the ability, efficiency, and thermal stability to be applied as a gas sensor for propane.

2.
J Imaging ; 10(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38392096

RESUMO

This paper proposes the transformation S→C→, where S is a digital gray-level image and C→ is a vector expressed through the textural space. The proposed transformation is denominated Vectorial Image Representation on the Texture Space (VIR-TS), given that the digital image S is represented by the textural vector C→. This vector C→ contains all of the local texture characteristics in the image of interest, and the texture unit T→ entertains a vectorial character, since it is defined through the resolution of a homogeneous equation system. For the application of this transformation, a new classifier for multiple classes is proposed in the texture space, where the vector C→ is employed as a characteristics vector. To verify its efficiency, it was experimentally deployed for the recognition of digital images of tree barks, obtaining an effective performance. In these experiments, the parametric value λ employed to solve the homogeneous equation system does not affect the results of the image classification. The VIR-TS transform possesses potential applications in specific tasks, such as locating missing persons, and the analysis and classification of diagnostic and medical images.

3.
Sensors (Basel) ; 23(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896461

RESUMO

In industrial applications based on texture classification, efficient and fast classifiers are extremely useful for quality control of industrial processes. The classifier of texture images has to satisfy two requirements: It must be efficient and fast. In this work, a texture unit is coded in parallel, and using observation windows larger than 3×3, a new texture spectrum called Texture Spectrum based on the Parallel Encoded Texture Unit (TS_PETU) is proposed, calculated, and used as a characteristic vector in a multi-class classifier, and then two image databases are classified. The first database contains images from the company Interceramic®® and the images were acquired under controlled conditions, and the second database contains tree stems and the images were acquired in natural environments. Based on our experimental results, the TS_PETU satisfied both requirements (efficiency and speed), was developed for binary images, and had high efficiency, and its compute time could be reduced by applying parallel coding concepts. The classification efficiency increased by using larger observational windows, and this one was selected based on the window size. Since the TS_PETU had high efficiency for Interceramic®® tile classification, we consider that the proposed technique has significant industrial applications.

4.
Materials (Basel) ; 16(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37512298

RESUMO

Nickel antimonate (NiSb2O6) powders were synthesized using a wet chemistry process assisted by microwave radiation and calcination from 600 to 700 °C to evaluate their photocatalytic and gas-sensing properties. The crystalline phase obtained at 800 °C of trirutile-type nickel antimonate was confirmed with powder X-ray diffraction. The morphology and size of the nanostructures were analyzed employing electron microscopy (SEM and TEM), identifying irregular particles and microrods (~277 nm, made up of polyhedral shapes of size ~65 nm), nanorods with an average length of ~77 nm, and nanostructures of polyhedral type of different sizes. UV-vis analysis determined that the bandgap of the powders obtained at 800 °C was ~3.2 eV. The gas sensing tests obtained a maximum response of ~5 for CO (300 ppm) at 300 °C and ~10 for C3H8 (500 ppm) at 300 °C. According to these results, we consider that NiSb2O6 can be applied as a gas sensor. On the other hand, the photocatalytic properties of the antimonate were examined by monitoring the discoloration of malachite green (MG) at five ppm. MG concentration monitoring was carried out using UV-visible spectroscopy, and 85% discoloration was achieved after 200 min of photocatalytic reaction.

5.
Sensors (Basel) ; 21(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805344

RESUMO

ZnAl2O4 nanoparticles were synthesized employing a colloidal method. The oxide powders were obtained at 300 °C, and their crystalline phase was corroborated by X-ray diffraction. The composition and chemical structure of the ZnAl2O4 was carried out by X-ray and photoelectron spectroscopy (XPS). The optical properties were studied by UV-vis spectroscopy, confirming that the ZnAl2O4 nanoparticles had a direct transition with bandgap energy of 3.2 eV. The oxide's microstructures were microbars of ~18.2 nm in size (on average), as analyzed by scanning (SEM) and transmission (TEM) electron microscopies. Dynamic and stationary gas detection tests were performed in controlled propane atmospheres, obtaining variations concerning the concentration of the test gas and the operating temperature. The optimum temperatures for detecting propane concentrations were 200 and 300 °C. In the static test results, the ZnAl2O4 showed increases in propane response since changes in the material's electrical conductance were recorded (conductance = 1/electrical resistance, Ω). The increases were ~2.8 at 200 °C and ~7.8 at 300 °C. The yield shown by the ZnAl2O4 nanoparticles for detecting propane concentrations was optimal compared to other similar oxides categorized as potential gas sensors.

6.
Sensors (Basel) ; 20(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941162

RESUMO

Interferometry sensors are frequently analyzed by applying the Fourier transform because the transformation separates all frequency components of its signal, making its study on a complex plane feasible. In this work, we study the relation between the optical path difference (OPD) and poles location theoretically and experimentally, using the Laplace transform and a pole-zero map. Theory and experiments are in concordance. For our study, only the cosine function was considered, which is filtered from the interference pattern. In experimental work, two unperturbed low-finesse Fabry-Pérot interferometers were used. First, a Fabry-Pérot interferometer that has a cavity length of ~1.6 mm was used. Its optical path difference was 2.33 mm and the poles were localized at points ±i12. rad/nm. Secondly, a Fabry-Pérot interferometer with a cavity length of ~5.2 mm was used, and its optical path difference was 7.59 mm and the poles were localized at points ±i40.4 rad/nm. Experimental results confirmed the theoretical analysis. Our proposal finds practical application for interferometer analysis, signal processing of optical fiber sensors, communication system analysis, and multiplexing systems based on interferometers.

7.
J Med Case Rep ; 13(1): 283, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31495337

RESUMO

BACKGROUND: Primary spontaneous pneumothorax is a common disorder occurring in young adults without underlying lung disease. Although tobacco smoking is a well-documented risk factor for spontaneous pneumothorax, an association between electronic cigarette use (that is, vaping) and spontaneous pneumothorax has not been noted. We report a case of spontaneous pneumothoraces correlated with vaping. CASE PRESENTATION: An 18-year-old Caucasian man presented twice with recurrent right-sided spontaneous pneumothoraces within 2 weeks. He reported a history of vaping just prior to both episodes. Diagnostic testing was notable for a right-sided spontaneous pneumothorax on chest X-ray and computed tomography scan. His symptoms improved following insertion of a chest tube and drainage of air on each occasion. In the 2-week follow-up visit for the recurrent episode, he was asymptomatic and reported that he was no longer using electronic cigarettes. CONCLUSIONS: Providers and patients should be aware of the potential risk of spontaneous pneumothorax associated with electronic cigarettes.


Assuntos
Pneumotórax/etiologia , Vaping/efeitos adversos , Adolescente , Tubos Torácicos , Drenagem , Humanos , Masculino , Pneumotórax/terapia , Recidiva
8.
Sensors (Basel) ; 19(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013787

RESUMO

In civil engineering quasi-distributed optical fiber sensors are used for reinforced concrete monitoring, precast concrete monitoring, temperature monitoring, strain monitoring and temperature/strain monitoring. These quasi-distributed sensors necessarily apply some multiplexing technique. However, on many occasions, two or more multiplexing techniques are combined to increase the number of local sensors and then the cost of each sensing point is reduced. In this work, a signal analysis and a new signal demodulation algorithm are reported for a quasi-distributed optic fiber sensor system based on Frequency Division Multiplexing/Wavelength Division Multiplexing (FDM/WDM) and low-precision Fabry-Pérot interferometers. The mathematical analysis and the new algorithm optimize its design, its implementation, improve its functionality and reduce the cost per sensing point. The analysis was corroborated by simulating a quasi-distributed sensor in operation. Theoretical analysis and numerical simulation are in concordance. The optimization considers multiplexing techniques, signal demodulation, physical parameters, system noise, instrumentation, and detection technique. Based on our analysis and previous results reported, the optical sensing system can have more than 4000 local sensors and it has practical applications in civil engineering.

9.
Sensors (Basel) ; 18(7)2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012964

RESUMO

Nanoparticles of manganese antimonate (MnSb2O6) were prepared using the microwave-assisted colloidal method for its potential application as a gas sensor. For the synthesis of the oxide, manganese nitrate, antimony chloride, ethylenediamine and ethyl alcohol (as a solvent) were used. The precursor material was calcined at 800 °C in air and analyzed by X-ray diffraction. The oxide crystallized into a hexagonal structure with spatial group P321 and cell parameters a = b = 8.8054 Å and c = 4.7229 Å. The microstructure of the material was analyzed by scanning electron microscopy (SEM), finding the growth of microrods with a size of around ~10.27 µm and some other particles with an average size of ~1.3 µm. Photoacoustic spectroscopy (PAS) studies showed that the optical energy band (Eg) of the oxide was of ~1.79 eV. Transmission electron microscopy (TEM) analyses indicated that the size of the nanoparticles was of ~29.5 nm on average. The surface area of the powders was estimated at 14.6 m²/g by the Brunauer⁻Emmett⁻Teller (BET) method. Pellets prepared from the nanoparticles were tested in carbon monoxide (CO) and propane (C3H8) atmospheres at different concentrations (0⁻500 ppm) and operating temperatures (100, 200 and 300 °C). The pellets were very sensitive to changes in gas concentration and temperature: the response of the material rose as the concentration and temperature increased. The results showed that the MnSb2O6 nanoparticles can be a good candidate to be used as a novel gas sensor.

10.
Sensors (Basel) ; 18(3)2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29495427

RESUMO

Spinel-type ZnMn2O4 nanoparticles were synthesized via a simple and inexpensive microwave-assisted colloidal route. Structural studies by X-ray diffraction showed that a spinel crystal phase of ZnMn2O4 was obtained at a calcination temperature of 500 °C, which was confirmed by Raman and UV-vis characterizations. Spinel-type ZnMn2O4 nanoparticles with a size of 41 nm were identified by transmission electron microscopy. Pellet-type sensors were fabricated using ZnMn2O4 nanoparticles as sensing material. Sensing measurements were performed by exposing the sensor to different concentrations of propane or carbon monoxide at temperatures in the range from 100 to 300 °C. Measurements performed at an operating temperature of 300 °C revealed a good response to 500 ppm of propane and 300 ppm of carbon monoxide. Hence, ZnMn2O4 nanoparticles possess a promising potential in the gas sensors field.

11.
Sensors (Basel) ; 17(4)2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28420083

RESUMO

The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor's properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift.

12.
Sensors (Basel) ; 16(12)2016 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-27999315

RESUMO

Spinel ZnCo2O4 nanoparticles were synthesized by means of the microwave-assisted colloidal method. A solution containing ethanol, Co-nitrate, Zn-nitrate, and dodecylamine was stirred for 24 h and evaporated by a microwave oven. The resulting solid material was dried at 200 °C and subsequently calcined at 500 °C for 5 h. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, confirming the formation of spinel ZnCo2O4 nanoparticles with average sizes between 49 and 75 nm. It was found that the average particle size decreased when the dodecylamine concentration increased. Pellets containing ZnCo2O4 nanoparticles were fabricated and tested as sensors in carbon monoxide (CO) and propane (C3H8) gases at different concentrations and temperatures. Sensor performance tests revealed an extremely high response to 300 ppm of CO at an operating temperature of 200 °C.

13.
Sensors (Basel) ; 16(2): 177, 2016 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-26840318

RESUMO

Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P42/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to 1.6 µm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C) at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres.

14.
Sensors (Basel) ; 14(9): 15802-14, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25162232

RESUMO

Experimental work on the synthesis of the CoSb2O6 oxide and its CO2 sensing properties is presented here. The oxide was synthesized by a microwave-assisted colloidal method in presence of ethylenediamine after calcination at 600 °C. This CoSb2O6 oxide crystallized in a tetragonal structure with cell parameters a = 4.6495 and c = 9.2763 Å, and space group P4(2)/mnm. To prove its physical, chemical and sensing properties, the oxide was subjected to a series of tests: Raman spectroscopy, Scanning Electron Microscopy (SEM) and impedance (Z) measurements. Microstructures, like columns, bars and hollow hemispheres, were observed. For the CO2 sensing test, a thick film of CoSb2O6 was used, measuring the impedance variations on the presence of air/CO2 flows (0.100 sccm/0.100 sccm) using AC (alternating current) signals in the frequency-range 0.1-100 kHz and low relative temperatures (250 and 300 °C). The CO2 sensing results were quite good.


Assuntos
Antimônio/química , Dióxido de Carbono/análise , Dióxido de Carbono/química , Cobalto/química , Condutometria/instrumentação , Óxidos/química , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...