Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 45(6): 2357-2368, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29604086

RESUMO

PURPOSE: Intraoperative dosimetry in low-dose-rate (LDR) permanent prostate brachytherapy requires accurate localization of the implanted seeds with respect to the prostate anatomy. Transrectal Ultrasound (TRUS) imaging, which is the main imaging modality used during the procedure, is not sufficiently robust for accurate seed localization. We present a method for integration of electromagnetic (EM) tracking into LDR prostate brachytherapy procedure by fusing it with TRUS imaging for seed localization. METHOD: Experiments were conducted on five tissue mimicking phantoms in a controlled environment. The seeds were implanted into each phantom using an EM-tracked needle, which allowed recording of seed drop locations. After each needle, we reconstructed a 3D ultrasound (US) volume by compounding a series of 2D US images acquired during retraction of an EM-tracked TRUS probe. Then, a difference image was generated by nonrigid registration and subtraction of two consecutive US volumes. A US-only seed detection method was used to detect seed candidates in the difference volume, based on the signature of the seeds. Finally, the EM-based positions of the seeds were used to detect the false positives of the US-based seed detection method and also to estimate the positions of the missing seeds. After the conclusion of the seed implant process, we acquired a CT image. The ground truth for seed locations was obtained by localizing the seeds in the CT image and registering them to the US coordinate system. RESULTS: Compared to the ground truth, the US-only detection algorithm achieved a localization error mean of 1.7 mm with a detection rate of 85%. By contrast, the EM-only seed localization method achieved a localization error mean of 3.7 mm with a detection rate of 100%. By fusing EM-tracking information with US imaging, we achieved a localization error mean of 1.8 mm while maintaining a 100% detection rate without any false positives. CONCLUSIONS: Fusion of EM-tracking and US imaging for prostate brachytherapy can combine high localization accuracy of US-based seed detection with the robustness and high detection rate of EM-based seed localization. Our phantom experiments serve as a proof of concept to demonstrate the potential value of integrating EM-tracking into LDR prostate brachytherapy.


Assuntos
Algoritmos , Braquiterapia/métodos , Próstata/efeitos da radiação , Neoplasias da Próstata/tratamento farmacológico , Radioterapia Guiada por Imagem/métodos , Ultrassonografia de Intervenção/métodos , Braquiterapia/instrumentação , Humanos , Imageamento Tridimensional/instrumentação , Masculino , Imagens de Fantasmas , Estudo de Prova de Conceito , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Ultrassonografia de Intervenção/instrumentação
2.
J Contemp Brachytherapy ; 7(4): 280-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26622231

RESUMO

PURPOSE: Accurate insertion and overall needle positioning are key requirements for effective brachytherapy treatments. This work aims at demonstrating the accuracy performance and the suitability of the Aurora(®) V1 Planar Field Generator (PFG) electromagnetic tracking system (EMTS) for real-time treatment assistance in interstitial brachytherapy procedures. MATERIAL AND METHODS: The system's performance was characterized in two distinct studies. First, in an environment free of EM disturbance, the boundaries of the detection volume of the EMTS were characterized and a tracking error analysis was performed. Secondly, a distortion analysis was conducted as a means of assessing the tracking accuracy performance of the system in the presence of potential EM disturbance generated by the proximity of standard brachytherapy components. RESULTS: The tracking accuracy experiments showed that positional errors were typically 2 ± 1 mm in a zone restricted to the first 30 cm of the detection volume. However, at the edges of the detection volume, sensor position errors of up to 16 mm were recorded. On the other hand, orientation errors remained low at ± 2° for most of the measurements. The EM distortion analysis showed that the presence of typical brachytherapy components in vicinity of the EMTS had little influence on tracking accuracy. Position errors of less than 1 mm were recorded with all components except with a metallic arm support, which induced a mean absolute error of approximately 1.4 mm when located 10 cm away from the needle sensor. CONCLUSIONS: The Aurora(®) V1 PFG EMTS possesses a great potential for real-time treatment assistance in general interstitial brachytherapy. In view of our experimental results, we however recommend that the needle axis remains as parallel as possible to the generator surface during treatment and that the tracking zone be restricted to the first 30 cm from the generator surface.

3.
Brachytherapy ; 13(6): 640-50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24929641

RESUMO

PURPOSE: The accurate delivery of high-dose-rate brachytherapy is dependent on the correct identification of the position and shape of the treatment catheters. In many brachytherapy clinics, transrectal ultrasound (TRUS) imaging is used to identify the catheters. However, manual catheter identification on TRUS images can be time consuming, subjective, and operator dependent because of calcifications and distal shadowing artifacts. We report the use of electromagnetic (EM) tracking technology to map the position and shape of catheters inserted in a tissue-mimicking phantom. METHODS AND MATERIALS: The accuracy of the EM system was comprehensively quantified using a three-axis robotic system. In addition, EM tracks acquired from catheters in a phantom were compared with catheter positions determined from TRUS and CT images to compare EM system performance to standard clinical imaging modalities. The tracking experiments were performed in a controlled laboratory environment and also in a typical brachytherapy operating room to test for potential EM distortions. RESULTS: The robotic validation of the EM system yielded a mean accuracy of <0.5 mm for a clinically acceptable field of view in a nondistorting environment. The EM-tracked catheter representations were found to have an accuracy of <1 mm when compared with TRUS- and CT-identified positions, both in the laboratory environment and in the brachytherapy operating room. The achievable accuracy depends to a large extent on the calibration of the TRUS probe, geometry of the tracked devices relative to the EM field generator, and locations of surrounding clinical equipment. To address the issue of variable accuracy, a robust calibration algorithm has been developed and integrated into the workflow. The proposed mapping technique was also found to improve the workflow efficiency of catheter identification. CONCLUSIONS: The high baseline accuracy of the EM system, the consistent agreement between EM-tracked, TRUS- and CT-identified catheters, and the improved workflow efficiency illustrate the potential value of using EM tracking for catheter mapping in high-dose-rate brachytherapy.


Assuntos
Braquiterapia/métodos , Catéteres , Processamento de Imagem Assistida por Computador , Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radioterapia Guiada por Imagem/métodos , Algoritmos , Calibragem , Fenômenos Eletromagnéticos , Humanos , Masculino , Imagens de Fantasmas , Dosagem Radioterapêutica , Robótica , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...