Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brain Commun ; 6(2): fcae080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495306

RESUMO

Components that comprise our brain parenchymal and cerebrovascular structures provide a homeostatic environment for proper neuronal function to ensure normal cognition. Cerebral insults (e.g. ischaemia, microbleeds and infection) alter cellular structures and physiologic processes within the neurovascular unit and contribute to cognitive dysfunction. COVID-19 has posed significant complications during acute and convalescent stages in multiple organ systems, including the brain. Cognitive impairment is a prevalent complication in COVID-19 patients, irrespective of severity of acute SARS-CoV-2 infection. Moreover, overwhelming evidence from in vitro, preclinical and clinical studies has reported SARS-CoV-2-induced pathologies in components of the neurovascular unit that are associated with cognitive impairment. Neurovascular unit disruption alters the neurovascular coupling response, a critical mechanism that regulates cerebromicrovascular blood flow to meet the energetic demands of locally active neurons. Normal cognitive processing is achieved through the neurovascular coupling response and involves the coordinated action of brain parenchymal cells (i.e. neurons and glia) and cerebrovascular cell types (i.e. endothelia, smooth muscle cells and pericytes). However, current work on COVID-19-induced cognitive impairment has yet to investigate disruption of neurovascular coupling as a causal factor. Hence, in this review, we aim to describe SARS-CoV-2's effects on the neurovascular unit and how they can impact neurovascular coupling and contribute to cognitive decline in acute and convalescent stages of the disease. Additionally, we explore potential therapeutic interventions to mitigate COVID-19-induced cognitive impairment. Given the great impact of cognitive impairment associated with COVID-19 on both individuals and public health, the necessity for a coordinated effort from fundamental scientific research to clinical application becomes imperative. This integrated endeavour is crucial for mitigating the cognitive deficits induced by COVID-19 and its subsequent burden in this especially vulnerable population.

2.
PLoS One ; 18(8): e0289508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535668

RESUMO

INTRODUCTION: Mild cognitive impairment (MCI) is a prodromal stage to dementia, affecting up to 20% of the aging population worldwide. Patients with MCI have an annual conversion rate to dementia of 15-20%. Thus, conditions that increase the conversion from MCI to dementia are of the utmost public health concern. The COVID-19 pandemic poses a significant impact on our aging population with cognitive decline as one of the leading complications following recovery from acute infection. Recent findings suggest that COVID-19 increases the conversion rate from MCI to dementia in older adults. Hence, we aim to uncover a mechanism for COVID-19 induced cognitive impairment and progression to dementia to pave the way for future therapeutic targets that may mitigate COVID-19 induced cognitive decline. METHODOLOGY: A prospective longitudinal study is conducted at the University of Oklahoma Health Sciences Center. Patients are screened in the Department of Neurology and must have a formal diagnosis of MCI, and MRI imaging prior to study enrollment. Patients who meet the inclusion criteria are enrolled and followed-up at 18-months after their first visit. Visit one and 18-month follow-up will include an integrated and cohesive battery of vascular and cognitive measurements, including peripheral endothelial function (flow-mediated dilation, laser speckle contrast imaging), retinal and cerebrovascular hemodynamics (dynamic vessel retinal analysis, functional near-infrared spectroscopy), and fluid and crystalized intelligence (NIH-Toolbox, n-back). Multiple logistic regression will be used for primary longitudinal data analysis to determine whether COVID-19 related impairment in neurovascular coupling and increases in white matter hyperintensity burden contribute to progression to dementia.


Assuntos
COVID-19 , Disfunção Cognitiva , Demência , Humanos , Idoso , Encéfalo , Estudos Prospectivos , Estudos Longitudinais , Pandemias , Progressão da Doença , COVID-19/epidemiologia , Disfunção Cognitiva/epidemiologia , Demência/epidemiologia , Testes Neuropsicológicos , Estudos Observacionais como Assunto
3.
Neurorehabil Neural Repair ; 35(8): 704-716, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34060934

RESUMO

Phantom limb pain (PLP) is a frequent complication in amputees, which is often refractory to treatments. We aim to assess in a factorial trial the effects of transcranial direct current stimulation (tDCS) and mirror therapy (MT) in patients with traumatic lower limb amputation; and whether the motor cortex plasticity changes drive these results. In this large randomized, blinded, 2-site, sham-controlled, 2 × 2 factorial trial, 112 participants with traumatic lower limb amputation were randomized into treatment groups. The interventions were active or covered MT for 4 weeks (20 sessions, 15 minutes each) combined with 2 weeks of either active or sham tDCS (10 sessions, 20 minutes each) applied to the contralateral primary motor cortex. The primary outcome was PLP changes on the visual analogue scale at the end of interventions (4 weeks). Motor cortex excitability and cortical mapping were assessed by transcranial magnetic stimulation (TMS). We found no interaction between tDCS and MT groups (F = 1.90, P = .13). In the adjusted models, there was a main effect of active tDCS compared to sham tDCS (beta coefficient = -0.99, P = .04) on phantom pain. The overall effect size was 1.19 (95% confidence interval: 0.90, 1.47). No changes in depression and anxiety were found. TDCS intervention was associated with increased intracortical inhibition (coefficient = 0.96, P = .02) and facilitation (coefficient = 2.03, P = .03) as well as a posterolateral shift of the center of gravity in the affected hemisphere. MT induced no motor cortex plasticity changes assessed by TMS. These findings indicate that transcranial motor cortex stimulation might be an affordable and beneficial PLP treatment modality.


Assuntos
Terapia de Espelho de Movimento/métodos , Córtex Motor/fisiopatologia , Membro Fantasma/terapia , Estimulação Magnética Transcraniana/métodos , Adulto , Terapia Combinada , Método Duplo-Cego , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Membro Fantasma/fisiopatologia , Resultado do Tratamento , Adulto Jovem
4.
BMJ Open ; 9(10): e032710, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31672712

RESUMO

INTRODUCTION: Fibromyalgia (FM) is a common debilitating condition with limited therapeutic options. Medications have low efficacy and are often associated with adverse effects. Given that FM is associated with a defective endogenous pain control system and central sensitisation, combining interventions such as transcranial direct current stimulation (tDCS) and aerobic exercise (AE) to modulate pain-processing circuits may enhance pain control. METHODS AND ANALYSIS: A prospective, randomised (1:1:1:1), placebo-controlled, double-blind, factorial clinical trial will test the hypothesis that optimised tDCS (16 anodal tDCS sessions combined with AE) can restore of the pain endogenous control system. Participants with FM (n=148) will undergo a conditioning exercise period and be randomly allocated to one of four groups: (1) active tDCS and AE, (2) sham tDCS and AE, (3) active tDCS and non-aerobic exercise (nAE) or (4) sham tDCS and nAE. Pain inhibitory activity will be assessed using conditioned pain modulation (CPM) and temporal slow pain summation (TSPS)-primary outcomes. Secondary outcomes will include the following assessments: Transcranial magnetic stimulation and electroencephalography as cortical markers of pain inhibitory control and thalamocortical circuits; secondary clinical outcomes on pain, FM, quality of life, sleep and depression. Finally, the relationship between the two main mechanistic targets in this study-CPM and TSPS-and changes in secondary clinical outcomes will be tested. The change in the primary efficacy endpoint, CPM and TSPS, from baseline to week 4 of stimulation will be tested with a mixed linear model and adjusted for important demographic variables. ETHICS AND DISSEMINATION: This study obeys the Declaration of Helsinki and was approved by the Institutional Review Board (IRB) of Partners Healthcare under the protocol number 2017P002524. Informed consent will be obtained from participants. Study findings will be reported in conferences and peer-reviewed journal publications. TRIAL REGISTRATION NUMBER: NCT03371225.


Assuntos
Fibromialgia/terapia , Manejo da Dor/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Método Duplo-Cego , Terapia por Exercício/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto Jovem
5.
Neurorehabil Neural Repair ; 33(8): 643-655, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286828

RESUMO

Background. Although recent evidence has shown a new role of fluoxetine in motor rehabilitation, results are mixed. We conducted a randomized clinical trial to evaluate whether combining repetitive transcranial magnetic stimulation (rTMS) with fluoxetine increases upper limb motor function in stroke. Methods. Twenty-seven hemiparetic patients within 2 years of ischemic stroke were randomized into 3 groups: Combined (active rTMS + fluoxetine), Fluoxetine (sham rTMS + fluoxetine), or Placebo (sham rTMS + placebo fluoxetine). Participants received 18 sessions of 1-Hz rTMS in the unaffected primary motor cortex and 90 days of fluoxetine (20 mg/d). Motor function was assessed using Jebsen-Taylor Hand Function (JTHF) and Fugl-Meyer Assessment (FMA) scales. Corticospinal excitability was assessed with TMS. Results. After adjusting for time since stroke, there was significantly greater improvement in JTHF in the combined rTMS + fluoxetine group (mean improvement: -214.33 seconds) than in the placebo (-177.98 seconds, P = 0.005) and fluoxetine (-50.16 seconds, P < 0.001) groups. The fluoxetine group had less improvement than placebo on both scales (respectively, JTHF: -50.16 vs -117.98 seconds, P = 0.038; and FMA: 6.72 vs 15.55 points, P = 0.039), suggesting that fluoxetine possibly had detrimental effects. The unaffected hemisphere showed decreased intracortical inhibition in the combined and fluoxetine groups, and increased intracortical facilitation in the fluoxetine group. This facilitation was negatively correlated with motor function improvement (FMA, r2 = -0.398, P = 0.0395). Conclusion. Combined fluoxetine and rTMS treatment leads to better motor function in stroke than fluoxetine alone and placebo. Moreover, fluoxetine leads to smaller improvements than placebo, and fluoxetine's effects on intracortical facilitation suggest a potential diffuse mechanism that may hinder beneficial plasticity on motor recovery.


Assuntos
Fluoxetina/uso terapêutico , Atividade Motora , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Acidente Vascular Cerebral/terapia , Estimulação Magnética Transcraniana , Terapia Combinada , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Paresia/etiologia , Paresia/fisiopatologia , Paresia/terapia , Tratos Piramidais/efeitos dos fármacos , Tratos Piramidais/fisiopatologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento , Extremidade Superior
6.
Expert Rev Med Devices ; 16(6): 451-466, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31092060

RESUMO

INTRODUCTION: Introduction: Transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are noninvasive neuromodulation techniques used as therapeutic and research tools for several neuropsychiatric conditions. Given the exponential scientific growth of this field, we aimed to systematically review the most cited clinical trials using TMS or tDCS. AREAS COVERED: A de-novo keyword search strategy identified and characterized the 100 most-cited trials. Total citation count for the most cited trials was 13,204. Articles were published between 2008 and 2014 in 50 different journals with a median impact factor of 6.52 (IQR 3.37). Almost half of the top cited papers were investigating mechanisms of action in healthy subjects. Most studies were feasibility trials and only five were pivotal trials, including the ones used for recent FDA approval. Seven articles were interlinked with another article by at least 25 citations and eight authors had collaborated with at least one other author. EXPERT OPINION: Although there has been a significant increase in interest for rTMS and tDCS, most of the cited clinical trials are still small feasibility studies, what reinforced the need for more robust clinical trials (larger samples sizes and effects sizes) to better define clinical effectiveness.


Assuntos
Ensaios Clínicos como Assunto , Publicações , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Autoria , Humanos , Publicações Periódicas como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...