Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-448419

RESUMO

AUTHOR SUMMARYPhosphatidylserine (PS) receptors are PS binding proteins that mediate uptake of apoptotic bodies. Many enveloped viruses utilize this PS/PS receptor mechanism to adhere to and internalize into the endosomal compartment of cells and this is termed apoptotic mimicry. For viruses that have a mechanism(s) of endosomal escape, apoptotic mimicry is a productive route of virus entry. We evaluated if PS receptors serve as cell surface receptors for SARS-CoV-2 and found that the PS receptors, AXL, TIM-1 and TIM-4, facilitated virus infection when low concentrations of the SARS-CoV-2 cognate receptor, ACE2, was present. Consistent with the established mechanism of PS receptor utilization by other viruses, PS liposomes competed with SARS-CoV-2 for binding and entry. We demonstrated that this PS receptor enhances SARS-CoV-2 binding to and infection of an array of human lung cell lines and is an under-appreciated but potentially important host factor facilitating SARS-CoV-2 entry.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-045617

RESUMO

The novel coronavirus SARS-CoV-2 was identified as the causative agent of the ongoing pandemic COVID 19. COVID-19-associated deaths are mainly attributed to severe pneumonia and respiratory failure. Recent work demonstrated that SARS-CoV-2 binds to angiotensin converting enzyme 2 (ACE2) in the lung. To better understand ACE2 abundance and expression patterns in the lung we interrogated our in-house single-cell RNA-sequencing dataset containing 70,085 EPCAM+ lung epithelial cells from paired normal and lung adenocarcinoma tissues. Transcriptomic analysis revealed a diverse repertoire of airway lineages that included alveolar type I and II, bronchioalveolar, club/secretory, quiescent and proliferating basal, ciliated and malignant cells as well as rare populations such as ionocytes. While the fraction of lung epithelial cells expressing ACE2 was low (1.7% overall), alveolar type II (AT2, 2.2% ACE2+) cells exhibited highest levels of ACE2 expression among all cell subsets. Further analysis of the AT2 compartment (n = 27,235 cells) revealed a number of genes co-expressed with ACE2 that are important for lung pathobiology including those associated with chronic obstructive pulmonary disease (COPD; HHIP), pneumonia and infection (FGG and C4BPA) as well as malarial/bacterial (CD36) and viral (DMBT1) scavenging which, for the most part, were increased in smoker versus light or non-smoker cells. Notably, DMBT1 was highly expressed in AT2 cells relative to other lung epithelial subsets and its expression positively correlated with ACE2. We describe a population of ACE2-positive AT2 cells that co-express pathogen (including viral) receptors (e.g. DMBT1) with crucial roles in host defense thus comprising plausible phenotypic targets for treatment of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...