Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37421080

RESUMO

In recent years, Micro-Electro-Mechanical Systems (MEMS) technology has had an impressive impact in the field of acoustic transducers, allowing the development of smart, low-cost, and compact audio systems that are employed in a wide variety of highly topical applications (consumer devices, medical equipment, automotive systems, and many more). This review, besides analyzing the main integrated sound transduction principles typically exploited, surveys the current State-of-the-Art scenario, presenting the recent performance advances and trends of MEMS microphones and speakers. In addition, the interface Integrated Circuits (ICs) needed to properly read the sensed signals or, on the other hand, to drive the actuation structures are addressed with the aim of offering a complete overview of the currently adopted solutions.

2.
Sensors (Basel) ; 23(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904929

RESUMO

InfraRed Focal Plane Arrays (IRFPAs) are crucial components in a wide range of applications, including night vision, thermal imaging and gas sensing. Among the various types of IRFPAs, micro-bolometer-based ones have gained significant attention due to their high sensitivity, low noise and low cost. However, their performance is heavily dependent on the readout interface, which converts the analog electrical signals provided by the micro-bolometers into digital signals for further processing and analysis. This paper briefly introduces these kinds of devices and their function, reporting and discussing a list of key parameters used to evaluate their performance; after that, the focus is shifted to the readout interface architecture with particular attention to the different strategies adopted, across the last two decades, in the design and development of the main blocks included in the readout chain.

3.
Micromachines (Basel) ; 13(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36422453

RESUMO

This paper presents an extensive review of the main highlights in the Temperature-to-Digital Converters (TDCs) field, which has gained importance and research interest throughout the last two decades. The key techniques and approaches that have led to the evolution of this kind of systems are presented and compared; their peculiarities are identified in order to highlight the pros and cons of the different design methods, and the main trade-offs are extracted from this analysis. Finally, the trends that have emerged from the performance evaluation of the large amount of published works in this field are identified with the purpose of providing a directional view of the past, present and future features of these devices.

4.
Micromachines (Basel) ; 13(6)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35744547

RESUMO

This paper presents a detailed analysis of a micromachined thermopile detector featuring high responsivity and a versatile mosaic structure, based on 128 60 µm × 60 µm pixels connected in series and/or in parallel. The mosaic structure is based on the one employed for the thermal sensor known as TMOS, which consists of a CMOS-SOI transistor embedded in a suspended and thermally isolated absorbing membrane, released through microelectro mechanical system (MEMS) post-processing. Two versions of the thermopile detector, featuring different series/parallel connections, are presented and were experimentally characterized. The most performant of the two achieved 2.7 × 104 V/W responsivity. The thermopile sensors' performances are compared to that of the TMOS sensor, adopting different configurations, and their application as proximity detectors was verified through measurements.

5.
Micromachines (Basel) ; 12(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546478

RESUMO

The worldwide spread of COVID-19 has forced us to adapt to a new way of life made of social distancing, avoidance of physical contact and temperature checks before entering public places, in order to successfully limit the virus circulation. The role of technology has been fundamental in order to support the required changes to our lives: thermal sensors, in particular, are especially suited to address the needs arisen during the pandemic. They are, in fact, very versatile devices which allow performing contactless human body temperature measurements, presence detection and people counting, and automation of appliances and systems, thus avoiding the need to touch them. This paper reviews the theory behind thermal detectors, considering the different types of sensors proposed during the last ten years, while focusing on their possible employment for COVID-19 related applications.

6.
Sci Data ; 8(1): 48, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547309

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder associated with motor and non-motor symptoms. Current treatments primarily focus on managing motor symptom severity such as tremor, bradykinesia, and rigidity. However, as the disease progresses, treatment side-effects can emerge such as on/off periods and dyskinesia. The objective of the Levodopa Response Study was to identify whether wearable sensor data can be used to objectively quantify symptom severity in individuals with PD exhibiting motor fluctuations. Thirty-one subjects with PD were recruited from 2 sites to participate in a 4-day study. Data was collected using 2 wrist-worn accelerometers and a waist-worn smartphone. During Days 1 and 4, a portion of the data was collected in the laboratory while subjects performed a battery of motor tasks as clinicians rated symptom severity. The remaining of the recordings were performed in the home and community settings. To our knowledge, this is the first dataset collected using wearable accelerometers with specific focus on individuals with PD experiencing motor fluctuations that is made available via an open data repository.


Assuntos
Acelerometria/métodos , Doença de Parkinson/diagnóstico , Dispositivos Eletrônicos Vestíveis , Humanos , Núcleos Parabraquiais , Doença de Parkinson/fisiopatologia , Smartphone , Punho
7.
Sci Data ; 8(1): 47, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547317

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. Dyskinesia and motor fluctuations are complications of PD medications. An objective measure of on/off time with/without dyskinesia has been sought for some time because it would facilitate the titration of medications. The objective of the dataset herein presented is to assess if wearable sensor data can be used to generate accurate estimates of limb-specific symptom severity. Nineteen subjects with PD experiencing motor fluctuations were asked to wear a total of five wearable sensors on both forearms and shanks, as well as on the lower back. Accelerometer data was collected for four days, including two laboratory visits lasting 3 to 4 hours each while the remainder of the time was spent at home and in the community. During the laboratory visits, subjects performed a battery of motor tasks while clinicians rated limb-specific symptom severity. At home, subjects were instructed to use a smartphone app that guided the periodic performance of a set of motor tasks.


Assuntos
Acelerometria/instrumentação , Monitorização Ambulatorial , Doença de Parkinson/diagnóstico , Dispositivos Eletrônicos Vestíveis , Antebraço , Humanos , Perna (Membro) , Aplicativos Móveis , Doença de Parkinson/fisiopatologia , Smartphone , Tronco
8.
Sensors (Basel) ; 19(18)2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527508

RESUMO

This paper presents a sensor-readout circuit system suitable for presence detection. The sensor consists of a miniaturized polysilicon thermopile, realized employing MEMS micromachining by STMicroelectronics, featuring a responsivity value equal to 180 V/W, with 13 ms response time. The readout circuit is implemented in a standard 130-nm CMOS process. As the sensor output signal behaves substantially as a DC, the interface circuit employs the chopper technique in order to minimize offset and noise contributions at low frequency, achieving a measured input referred offset standard deviation equal to 1.36 µ V. Measurements show that the presented system allows successfully detecting the presence of a person in a room standing at 5.5 m from the sensor. Furthermore, the correct operation of the system with moving targets, considering people either walking or running, was also demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...