Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cardiovasc Transl Res ; 12(5): 478-487, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30963423

RESUMO

We have shown previously that during myocardial ischemia/reperfusion (MI/R), toll-like receptor 2 (TLR2) signaling regulates connexin 43 (Cx43) subcellular localization and function and dampens arrhythmia formation. We aimed to identify sites capable of TLR2-dependent redox modification within Cx43. Post-ischemic TLR2-/- or wild-type (WT) mouse hearts were analyzed by OxICAT. Cx43 was mutated to exclude redox modification and transfected into HL-1 cardiomyocytes (CM) that were challenged with a TLR2 agonist. We identified Cys260 of Cx43 to be susceptible to reversible oxidation MI/R; TLR2-/- leads to reduced H2O2 production in post-ischemic isolated mitochondria and subsequently reduced oxidation of Cx43 at Cys260. Cx43 was dephosphorylated in WT, while phosphorylation was preserved in TLR2-/-. Mutation of Cx43 (C260A) and lentiviral transfection in HL-1 CM accelerated pacemaker activity and reduced activity after TLR2 ligand stimulation. We here provide evidence for TLR2-dependent reversible oxidation of Cx43 at Cys260, which led to decreased Cx43 phosphorylation and affected CM pacemaker frequency and intercellular communication.


Assuntos
Arritmias Cardíacas/metabolismo , Conexina 43/metabolismo , Frequência Cardíaca , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Receptor 2 Toll-Like/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Comunicação Celular , Linhagem Celular , Conexina 43/deficiência , Conexina 43/genética , Cisteína , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/patologia , Oxirredução , Fosforilação , Transdução de Sinais , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética
2.
Cell Metab ; 27(5): 1026-1039.e6, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29606596

RESUMO

Muscle stem cells undergo a dramatic metabolic switch to oxidative phosphorylation during differentiation, which is achieved by massively increased mitochondrial activity. Since expression of the muscle-specific miR-1/133a gene cluster correlates with increased mitochondrial activity during muscle stem cell (MuSC) differentiation, we examined the potential role of miR-1/133a in metabolic maturation of skeletal muscles in mice. We found that miR-1/133a downregulate Mef2A in differentiated myocytes, thereby suppressing the Dlk1-Dio3 gene cluster, which encodes multiple microRNAs inhibiting expression of mitochondrial genes. Loss of miR-1/133a in skeletal muscles or increased Mef2A expression causes continuous high-level expression of the Dlk1-Dio3 gene cluster, compromising mitochondrial function. Failure to terminate the stem cell-like metabolic program characterized by high-level Dlk1-Dio3 gene cluster expression initiates profound changes in muscle physiology, essentially abrogating endurance running. Our results suggest a major role of miR-1/133a in metabolic maturation of skeletal muscles but exclude major functions in muscle development and MuSC maintenance.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Iodeto Peroxidase/genética , MicroRNAs/genética , Mitocôndrias , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Diferenciação Celular/genética , Células Cultivadas , Fatores de Transcrição MEF2/genética , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Família Multigênica , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/citologia
3.
Medchemcomm ; 8(3): 657-661, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108783

RESUMO

By probing the quinone substrate binding site of mitochondrial complex I with a focused set of quinazoline-based compounds, we identified substitution patterns as being critical for the observed inhibition. The structure activity relationship study also resulted in the discovery of the quinazoline 4-N-[2-(4-phenoxyphenyl)ethyl]quinazoline-4,6-diamine (EVP4593) as a highly potent inhibitor of the multisubunit membrane protein. EVP4593 specifically and effectively reduces the mitochondrial complex I-dependent respiration with no effect on the respiratory chain complexes II-IV. Similar to established Q-site inhibitors, EVP4593 elicits the release of reactive oxygen species at the flavin site of mitochondrial complex I. Recently, EVP4593 was nominated as a lead compound for the treatment of Huntingtons disease. Our results challenge the postulated primary mode-of-action of EVP4593 as an inhibitor of NF-κB pathway activation and/or store-operated calcium influx.

4.
Free Radic Biol Med ; 99: 43-53, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27474449

RESUMO

Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn2+ ions induce hydrogen peroxide (H2O2) production from the ubiquinone binding site of mitochondrial complex II (IIQ) and generally enhance H2O2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H2O2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn2+ and different respiratory chain inhibitors led to a dynamically increasing H2O2emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca2+ increased the rate of H2O2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H2O2 emission: stimulating its production from distinct sites (e.g. site IIQ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle.


Assuntos
Cloretos/farmacologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Complexo II de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Compostos de Manganês/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Canais de Cálcio/metabolismo , Cloreto de Cálcio/farmacologia , Ciclo do Ácido Cítrico/fisiologia , Ciclosporina/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/fisiologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Oxirredutases/metabolismo , Permeabilidade/efeitos dos fármacos , Ratos , Compostos de Rutênio/farmacologia , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia , Superóxidos/metabolismo , Ubiquinona/metabolismo
5.
Arch Biochem Biophys ; 580: 75-83, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26116786

RESUMO

Manganese-induced toxicity has been recently associated with an increased ROS generation from mitochondrial complex II (succinate:ubiquinone oxidoreductase). To achieve a deeper mechanistic understanding how divalent manganese ions (Mn(2+)) could stimulate mitochondrial ROS production we performed investigations with bovine heart submitochondrial particles (SMP). In succinate fueled SMP, the Mn(2+) induced hydrogen peroxide (H2O2) production was blocked by the specific complex II ubiquinone binding site (IIQ) inhibitor atpenin A5 while a further downstream block at complex III increased the rate markedly. This suggests that site IIQ was the source of the reactive oxygen species. Moreover, Mn(2+) ions also accelerated the rate of superoxide dismutation, explaining the general increase in the measured rates of H2O2 production and an attenuation of direct superoxide detection.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Manganês/farmacologia , Membranas Mitocondriais/efeitos dos fármacos , Partículas Submitocôndricas/efeitos dos fármacos , Animais , Cátions Bivalentes , Bovinos , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/metabolismo , Piridonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Partículas Submitocôndricas/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia , Superóxido Dismutase/metabolismo , Ubiquinona/antagonistas & inibidores , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...