Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 11(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36976970

RESUMO

The Polluscope project aims to better understand the personal exposure to air pollutants in the Paris region. This article is based on one campaign from the project, which was conducted in the autumn of 2019 and involved 63 participants equipped with portable sensors (i.e., NO2, BC and PM) for one week. After a phase of data curation, analyses were performed on the results from all participants, as well as on individual participants' data for case studies. A machine learning algorithm was used to allocate the data to different environments (e.g., transportation, indoor, home, office, and outdoor). The results of the campaign showed that the participants' exposure to air pollutants depended very much on their lifestyle and the sources of pollution that may be present in the vicinity. Individuals' use of transportation was found to be associated with higher levels of pollutants, even when the time spent on transport was relatively short. In contrast, homes and offices were environments with the lowest concentrations of pollutants. However, some activities performed in indoor air (e.g., cooking) also showed a high levels of pollution over a relatively short period.

2.
ACS Earth Space Chem ; 7(1): 230-242, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36704177

RESUMO

Particulate organic nitrate (pON) can be a major part of secondary organic aerosol (SOA) and is commonly quantified by indirect means from aerosol mass spectrometer (AMS) data. However, pON quantification remains challenging. Here, we set out to quantify and characterize pON in the boreal forest, through direct field observations at Station for Measuring Ecosystem Atmosphere Relationships (SMEAR) II in Hyytiälä, Finland, and targeted single-precursor laboratory studies. We utilized a long time-of-flight AMS (LToF-AMS) for aerosol chemical characterization, with a particular focus to identify C x H y O z N+ ("CHON+") fragments. We estimate that during springtime at SMEAR II, pON (including both the organic and nitrate part) accounts for ∼10% of the particle mass concentration (calculated by the NO+/NO2 + method) and originates mainly from the NO3 radical oxidation of biogenic volatile organic compounds. The majority of the background nitrate aerosol measured is organic. The CHON+ fragment analysis was largely unsuccessful at SMEAR II, mainly due to low concentrations of the few detected fragments. However, our findings may be useful at other sites as we identified 80 unique CHON+ fragments from the laboratory measurements of SOA formed from NO3 radical oxidation of three pON precursors (ß-pinene, limonene, and guaiacol). Finally, we noted a significant effect on ion identification during the LToF-AMS high-resolution data processing, resulting in too many ions being fit, depending on whether tungsten ions (W+) were used in the peak width determination. Although this phenomenon may be instrument-specific, we encourage all (LTOF-) AMS users to investigate this effect on their instrument to reduce the possibility of incorrect identifications.

3.
Environ Sci Pollut Res Int ; 27(16): 20427-20445, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32240509

RESUMO

As part of the ChArMEx project (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr), one year of continuous filter sampling was conducted from August 2012 to August 2013 at a rural (coastal) site in Algeria aiming to better document fine aerosol seasonal variability and chemical composition in the Southern part of the Mediterranean. Over 350 filters have been collected, weighted, and analyzed for the main ions and organic and elemental carbon. The obtained mass concentrations varied between 2.5 and 50.6 µg/m3 for PM2.5. The annual modulations of PM2.5 showed higher concentrations in the end summer 2012 and the early summer 2013 (28.50 µg/m3 in August 2012, 20.23 µg/m3 in September 2012, 20.19 µg/m3 in July 2013, and 17.88 µg/m3in August 2013). The particulate organic matter (POM) presented the greatest contribution (50%), followed by the secondary inorganic aerosols (SIA, 27%). The average organic carbon OC concentrations ranged from 1.66 to 6.05 µgC/m3. The average elemental carbon EC concentrations ranged from 0.92 to 3.49 µgC/m3 and contributed 7% of the PM2.5 mass to Bou-Ismail. The average value of the OC /EC ratio was close to 5.1 in Bou-Ismail, and was close to that found in Finokalia 4 (Greece 2004, 2006) but was lower than that of Montseny 11 (Spain 2002-2007) Western Mediterranean Basin (WMB). The concentrations of water-soluble organic carbon WSOC in the PM2.5 ranging from 0.66 to 3.70 µg/m3 recorded the minimum level in March 2013, and the maximum level in August 2012, with an average of 2.02 µg/m3.


Assuntos
Poluentes Atmosféricos/análise , Aerossóis/análise , Argélia , Carbono/análise , Monitoramento Ambiental , Grécia , Material Particulado/análise , Estações do Ano , Espanha
4.
Sci Total Environ ; 711: 135055, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31810669

RESUMO

Wood burning is widely used for domestic heating and has been identified as a ubiquitous pollution source in urban areas, especially during cold months. The present study is based on a three and a half winter months field campaign in the Paris region measuring Volatile Organic Compounds (VOCs) by Proton Transfer Reaction Mass Spectrometry (PTR-MS) in addition to Black Carbon (BC). Several VOCs were identified as strongly wood burning-influenced (e.g., acetic acid, furfural), or traffic-influenced (e.g., toluene, C8-aromatics). Methylbutenone, benzenediol and butandione were identified for the first time as wood burning-related in ambient air. A Positive Matrix Factorization (PMF) analysis highlighted that wood burning is the most important source of VOCs during the winter season. (47%). Traffic was found to account for about 22% of the measured VOCs during the same period, whereas solvent use plus background accounted altogether for the remaining fraction. The comparison with the regional emission inventory showed good consistency for benzene and xylenes but revisions of the inventory should be considered for several VOCs such as acetic acid, C9-aromatics and methanol. Finally, complementary measurements acquired simultaneously at other sites in Île-de-France (the Paris region) enabled evaluation of spatial variabilities. The influence of traffic emissions on investigated pollutants displayed a clear negative gradient from roadside to suburban stations, whereas wood burning pollution was found to be fairly homogeneous over the region.

5.
Sci Total Environ ; 708: 134698, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31791756

RESUMO

The field of small air quality sensors is of growing interest within the scientific community, especially because this new technology is liable to improve air pollutant monitoring as well as be used for personal exposure quantification. Amongst the myriad existing devices, the performances are highly variable; this is why the sensors must be rigorously assessed before deployment, according to the intended use. This study is included in the Polluscope project; its purpose is to quantify personal exposure to air pollutants by using portable sensors. This paper designs and applies a methodology for the evaluation of portable air quality sensors to eight devices measuring PM, BC, NO2 and O3. The dedicated testing protocol includes static ambient air measurements compared with reference instruments, controlled chamber and mobility tests, as well as reproducibility evaluation. Three sensors (AE51, Cairclip and Canarin) were retained to be used for the field campaigns. The reliability of their performances were robustly quantified by using several metrics. These three devices (for a total of 36 units) were deployed to be worn by volunteers for a week. The results show the ability of sensors to discriminate between different environments (i.e., cooking, commuting or in an office). This work demonstrates, first, the ability of the three selected sensors to deliver data reliable enough to enable personal exposure estimations, and second, the robustness of this testing methodology.

6.
Sci Total Environ ; 712: 135598, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31791771

RESUMO

Agricultural activities highly contribute to atmospheric pollution, but the diversity and the magnitude of their emissions are still subject to large uncertainties. A field measurement campaign was conducted to characterize gaseous and particulate emissions from an experimental farm in France containing a sheep pen and a dairy stable. During the campaign, more than four hundred volatile organic compounds (VOCs) were characterized using an original combination of online and off-line measurements. Carbon dioxide (CO2) and ammonia (NH3) were the most concentrated compounds inside the buildings, followed by methanol, acetic acid and acetaldehyde. A CO2 mass balance model was used to estimate NH3 and VOC emission rates. To our knowledge, this study constitutes the first evaluation of emission rates for most of the identified VOCs. The measurements show that the dairy stable emitted more VOCs than the sheep pen. Despite strong VOC and NH3 emissions, the chemical composition of particles indicates that gaseous farm emissions do not affect the loading of fine particles inside the farm and is mainly explained by the low residence time inside the buildings. The experimental dataset obtained in this work will help to improve emissions inventories for agricultural activities.

7.
Anal Bioanal Chem ; 411(23): 5975-5983, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31312884

RESUMO

Secondary organic aerosol (SOA) accounts for a significant fraction of particulate matter (PM) in the atmosphere. Source identification, including the SOA fraction, is critical for the effective management of air pollution. Molecular SOA markers (tracers) are key compounds allowing the source apportionment of SOA using different methodologies. Therefore, accurate SOA marker measurements in ambient air PM are important. This study determined the concentrations of 12 key SOA markers (biogenic and anthropogenic) in the urban dust standard reference material available from the National Institute of Standards and Technology (NIST) (SRM 1649b). Two extraction procedures, sonication and QuEChERS-like (quick easy cheap effective rugged and safe), have been compared. Three research laboratories/institutes using two analytical techniques (gas chromatography/mass spectrometry (GC/MS) and ultra-high-pressure liquid chromatography/tandem mass spectrometry (HPLC/MS-MS)) carried out the analyses. The results obtained were all in good agreement, except for 2-methylerythritol. The analysis of this compound still seems to be challenging by both GC/MS (large injection repeatability) and HPLC/MS-MS (separation issues of both 2-methyltetrols: 2-methylthreitol and 2-methylerythritol). Possible inhomogeneity in the SRM for this compound could also explain the large discrepancies observed. Sonication and QuEChERS-like procedures gave comparable results for the extraction of the SOA markers showing that QuEChERS-like extraction is suitable for the analysis of SOA markers in ambient air PM. As this study provides, for the first time, indicative values in a reference material for typical SOA markers, the analysis of SRM 1649b (urban dust) could be used for quality control/assurance purposes. Graphical abstract.

8.
Appl Spectrosc ; 64(7): 810-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20615295

RESUMO

Electrospray ionization (ESI) and desorption electrospray ionization (DESI) mass spectrometry were for the first time compared to investigate degradation products resulting from radiolysis of polyurethane (PUR) irradiated using accelerated electrons. First, DESI optimization was performed to obtain the best results in terms of sensitivity for surface polymer analysis. Then, a comparison was performed between DESI-MS and ESI-MS characterization of the degradation products of irradiated PUR with different doses up to 10 MGy. Similar results were obtained despite a lower sensitivity of DESI. Finally, DESI results obtained by direct surface analysis of irradiated PUR films as a function of depth were compared to bulk analysis results obtained by ESI. This comparison shows that degradation products of PUR are very comparable at the surface or within the polymer, confirming the radio-oxidation homogeneity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...