Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 21(1): 114, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978051

RESUMO

BACKGROUND: Video-feedback observational therapy (VOT) is an intensive rehabilitation technique based on movement repetition and visualization that has shown benefits for motor rehabilitation of the upper and lower limbs. Despite an increase in recent literature on the neurophysiological effects of VOT in the upper limb, there is little knowledge about the cortical effects of visual feedback therapies when applied to the lower limbs. The aim of our study was to better understand the neurophysiological effects of VOT. Thus, we identified and compared the EEG biomarkers of healthy subjects undergoing lower limb VOT during three tasks: passive observation, observation and motor imagery, observation and motor execution. METHODS: We recruited 38 healthy volunteers and monitored their EEG activity while they performed a right ankle dorsiflexion task in the VOT. Three graded motor tasks associated with action observation were tested: action observation alone (O), motor imagery with action observation (OI), and motor execution synchronized with action observation (OM). The alpha and beta event-related desynchronization (ERD) and event-related synchronization (or beta rebound, ERS) rhythms were used as biomarkers of cortical activation and compared between conditions with a permutation test. Changes in connectivity during the task were computed with phase locking value (PLV). RESULTS: During the task, in the alpha band, the ERD was comparable between O and OI activities across the precentral, central and parietal electrodes. OM involved the same regions but had greater ERD over the central electrodes. In the beta band, there was a gradation of ERD intensity in O, OI and OM over central electrodes. After the task, the ERS changes were weak during the O task but were strong during the OI and OM (Cz) tasks, with no differences between OI and OM. CONCLUSION: Alpha band ERD results demonstrated the recruitment of mirror neurons during lower limb VOT due to visual feedback. Beta band ERD reflects strong recruitment of the sensorimotor cortex evoked by motor imagery and action execution. These results also emphasize the need for an active motor task, either motor imagery or motor execution task during VOT, to elicit a post-task ERS, which is absent during passive observation. Trial Registration NCT05743647.


Assuntos
Eletroencefalografia , Retroalimentação Sensorial , Voluntários Saudáveis , Extremidade Inferior , Humanos , Masculino , Feminino , Retroalimentação Sensorial/fisiologia , Adulto , Extremidade Inferior/fisiologia , Adulto Jovem , Imaginação/fisiologia , Ritmo alfa/fisiologia , Desempenho Psicomotor/fisiologia
2.
J Neuroeng Rehabil ; 21(1): 78, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745322

RESUMO

BACKGROUND: Mirror therapy (MT) has been shown to be effective for motor recovery of the upper limb after a stroke. The cerebral mechanisms of mirror therapy involve the precuneus, premotor cortex and primary motor cortex. Activation of the precuneus could be a marker of this effectiveness. MT has some limitations and video therapy (VT) tools are being developed to optimise MT. While the clinical superiority of these new tools remains to be demonstrated, comparing the cerebral mechanisms of these different modalities will provide a better understanding of the related neuroplasticity mechanisms. METHODS: Thirty-three right-handed healthy individuals were included in this study. Participants were equipped with a near-infrared spectroscopy headset covering the precuneus, the premotor cortex and the primary motor cortex of each hemisphere. Each participant performed 3 tasks: a MT task (right hand movement and left visual feedback), a VT task (left visual feedback only) and a control task (right hand movement only). Perception of illusion was rated for MT and VT by asking participants to rate the intensity using a visual analogue scale. The aim of this study was to compare brain activation during MT and VT. We also evaluated the correlation between the precuneus activation and the illusion quality of the visual mirrored feedback. RESULTS: We found a greater activation of the precuneus contralateral to the visual feedback during VT than during MT. We also showed that activation of primary motor cortex and premotor cortex contralateral to visual feedback was more extensive in VT than in MT. Illusion perception was not correlated with precuneus activation. CONCLUSION: VT led to greater activation of a parieto-frontal network than MT. This could result from a greater focus on visual feedback and a reduction in interhemispheric inhibition in VT because of the absence of an associated motor task. These results suggest that VT could promote neuroplasticity mechanisms in people with brain lesions more efficiently than MT. CLINICAL TRIAL REGISTRATION: NCT04738851.


Assuntos
Retroalimentação Sensorial , Córtex Motor , Espectroscopia de Luz Próxima ao Infravermelho , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Retroalimentação Sensorial/fisiologia , Córtex Motor/fisiologia , Córtex Motor/diagnóstico por imagem , Lobo Parietal/fisiologia , Lobo Parietal/diagnóstico por imagem , Desempenho Psicomotor/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos
3.
Brain Topogr ; 36(4): 447-458, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37202647

RESUMO

Characterization of cortical activation patterns during movements in healthy adults may help our understanding of how the injured brain works. Upper limb motor tasks are commonly used to assess impaired motor function and to predict recovery in individuals with neurological disorders such as stroke. This study aimed to explore cortical activation patterns associated with movements of the hand and shoulder using functional near-infrared spectroscopy (fNIRS) and to demonstrate the potential of this technology to distinguish cerebral activation between distal and proximal movements. Twenty healthy, right-handed participants were recruited. Two 10-s motor tasks (right-hand opening-closing and right shoulder abduction-adduction) were performed in a sitting position at a rate of 0.5 Hz in a block paradigm. We measured the variations in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) concentrations. fNIRS was performed with a 24-channel system (Brite 24®; Artinis) that covered most motor control brain regions bilaterally. Activation was mostly contralateral for both hand and shoulder movements. Activation was more lateral for hand movements and more medial for shoulder movements, as predicted by the classical homunculus representation. Both HbO2 and HbR concentrations varied with the activity. Our results showed that fNIRS can distinguish patterns of cortical activity in upper limb movements under ecological conditions. These results suggest that fNIRS can be used to measure spontaneous motor recovery and rehabilitation-induced recovery after brain injury. The trial was restropectively registered on January 20, 2023: NCT05691777 (clinicaltrial.gov).


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Acidente Vascular Cerebral , Adulto , Humanos , Mãos/fisiologia , Movimento/fisiologia , Ombro/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Extremidade Superior
4.
J Aging Phys Act ; 31(1): 96-104, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35894956

RESUMO

The present study aimed to examine the impact of the level of physical activity on prefrontal cortex activation in older adults during single- and dual-task walking. Thirty physically inactive and 36 active older adults (60-85 years old) performed six 2-min tasks on a treadmill: two static cognitive tasks, two single-task walking tests, and two dual-task walking tests. Hemodynamics at the level of the prefrontal cortex were measured continuously using functional near-infrared spectroscopy to evaluate cortical activation. The perceived difficulty of the task, cognitive performance, and gait parameters were also measured. During the walking tasks, the level of prefrontal cortex activation, the perceived difficulty of the task, cognitive performance, and motor parameters were not significantly different between active and inactive older adults. This unchanged activation with physical activity was likely the consequence of a similar motor and cognitive load and cardiorespiratory fitness in both active and inactive older adults.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Caminhada , Humanos , Idoso , Idoso de 80 Anos ou mais , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Caminhada/fisiologia , Marcha/fisiologia , Córtex Pré-Frontal/fisiologia , Hemodinâmica
5.
Sensors (Basel) ; 22(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35898041

RESUMO

Force and effort are important components of a motor task that can impact rehabilitation effectiveness. However, few studies have evaluated the impact of these factors on cortical activation during gait. The purpose of the study was to investigate the relation between cortical activation and effort required during exoskeleton-mediated gait at different levels of physical assistance in healthy individuals. Twenty-four healthy participants walked 10 m with an exoskeleton that provided four levels of assistance: 100%, 50%, 0%, and 25% resistance. Functional near-infrared spectroscopy (fNIRS) was used to measure cerebral flow dynamics with a 20-channel (plus two reference channels) device that covered most cortical motor regions bilaterally. We measured changes in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR). According to HbO2 levels, cortical activation only differed slightly between the assisted conditions and rest. In contrast, bilateral and widespread cortical activation occurred during the two unassisted conditions (somatosensory, somatosensory association, primary motor, premotor, and supplementary motor cortices). A similar pattern was seen for HbR levels, with a smaller number of significant channels than for HbO2. These results confirmed the hypothesis that there is a relation between cortical activation and level of effort during gait. This finding should help to optimize neurological rehabilitation strategies to drive neuroplasticity.


Assuntos
Robótica , Espectroscopia de Luz Próxima ao Infravermelho , Marcha/fisiologia , Humanos , Neuroimagem , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...