Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 40(10): 2174-83, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17196599

RESUMO

To determine intrinsic mechanical properties (elastic and failure) of trabecular calcaneus bone, chosen as a good predictor of hip fracture, we looked for the influence of image's size on a numerical simulation. One cubic sample of cancellous bone (9 x 9 x 9 mm(3)) was removed from the body of the calcaneus (6 females, 6 males, 79+/-9 yr). These samples were tested under compressive loading. Before compressive testing, these samples were imaged at 10.13 microm resolution using a 3D microcomputed tomography (muCT) (ESRF, France). The muCT images were converted to finite-element models. Depending on the bone density values (BV/TV), we compared two different finite element models: a linear hexahedral and a linear beam finite element models. Apparent experimental Young's modulus (E(app)(exp)) and maximum apparent experimental compressive stress (sigma(max)(exp)) were significantly correlated with bone density obtained by Archimedes's test (E(app)(exp)=236+/-231 MPa [19-742 MPa], sigma(max)(exp)=2.61+/-1.97 MPa [0.28-5.81 MPa], r>0.80, p<0.001). Under threshold at 40 microm, the size of the numerical samples (5.18(3) and 6.68(3)mm(3)) seems to be an important parameter on the accuracy of the results. The numerical trabecular Young's modulus was widely higher (E(trabecular)(num)=34,182+/-22,830 MPa [9700-87,211 MPa]) for the larger numerical samples and high BV/TV than those found classically by other techniques (4700-15,000 MPa). For rod-like bone samples (BV/TV<12%, n=7), Young's modulus, using linear beam element (E(trabecular)(num-skeleton): 10,305+/-5500 MPa), were closer to the Young's modulus found by other techniques. Those results show the limitation of hexahedral finite elements at 40 microm, mostly used, for thin trabecular structures.


Assuntos
Calcâneo/fisiologia , Simulação por Computador , Imageamento Tridimensional , Idoso , Idoso de 80 Anos ou mais , Calcâneo/anatomia & histologia , Força Compressiva/fisiologia , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Mecânico , Síncrotrons , Tomografia , Suporte de Carga/fisiologia
2.
Osteoarthritis Cartilage ; 14(3): 215-23, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16504546

RESUMO

OBJECTIVES: We evaluated the three-dimensional (3D) micro-architecture of subchondral trabecular (Tb) bone in osteoarthritis (OA). Due to high signal-to-noise ratio and high resolution, micro-computed tomography (micro-CT) by synchrotron radiation is considered as the gold standard for bone micro-architecture imaging. DESIGN: Subchondral bone were extracted from femoral heads in OA cases in areas without cartilage (OAc-; n=6) and in adjacent areas with cartilage (OAc+; n=6) and compared to eight subchondral bone cores from osteoporosis cases (OP). The voxel size of images was 10.13 microm. We measured the bone volume fraction (BV/TV) and morphological parameters: Tb thickness (TbTh), Tb spacing (TbSp), Tb number (TbN), and bone surface/bone volume (BS/BV). The degree of anisotropy (DA), the connectivity by the Euler number and the degree of mineralization (DM) were equally assessed. RESULTS: BV/TV and morphological parameters showed significant differences between OAc- and OP samples (P<0.01 except TbTh: P<0.05) and between OAc- and OAc+ (0.05

Assuntos
Cabeça do Fêmur/patologia , Osteoartrite do Quadril/patologia , Idoso , Idoso de 80 Anos ou mais , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Cabeça do Fêmur/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Microrradiografia/métodos , Pessoa de Meia-Idade , Osteoartrite do Quadril/diagnóstico por imagem , Síncrotrons , Tomografia Computadorizada por Raios X/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-18238219

RESUMO

In this paper, we propose a new approach based on three-dimensional (3-D) medial axis transformation for describing geometrical shapes in three-dimensional images. For 3-D-images, the medial axis, which is composed of both curves and medial surfaces, provides a simplified and reversible representation of structures. The purpose of this new method is to classify each voxel of the three-dimensional images in four classes: boundary, branching, regular and arc points. The classification is first performed on the voxels of the medial axis. It relies on the topological properties of a local region of interest around each voxel. The size of this region of interest is chosen as a function of the local thickness of the structure. Then, the reversibility of the medial axis is used to deduce a labeling of the whole object. The proposed method is evaluated on simulated images. Finally, we present an application of the method to the identification of bone structures from 3-D very high-resolution tomographic images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...