Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Comp Neurol ; 522(13): 3004-19, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24549606

RESUMO

Embryonic cuttlefish can first respond to a variety of sensory stimuli during early development in the egg capsule. To examine the neural basis of this ability, we investigated the emergence of sensory structures within the developing epidermis. We show that the skin facing the outer environment (not the skin lining the mantle cavity, for example) is derived from embryonic domains expressing the Sepia officinalis ortholog of pax3/7, a gene involved in epidermis specification in vertebrates. On the head, they are confined to discrete brachial regions referred to as "arm pillars" that expand and cover Sof-pax3/7-negative head ectodermal tissues. As revealed by the expression of the S. officinalis ortholog of elav1, an early marker of neural differentiation, the olfactory organs first differentiate at about stage 16 within Sof-pax3/7-negative ectodermal regions before they are covered by the definitive Sof-pax3/7-positive outer epithelium. In contrast, the eight mechanosensory lateral lines running over the head surface and the numerous other putative sensory cells in the epidermis, differentiate in the Sof-pax3/7-positive tissues at stages ∼24-25, after they have extended over the entire outer surfaces of the head and arms. Locations and morphologies of the various sensory cells in the olfactory organs and skin were examined using antibodies against acetylated tubulin during the development of S. officinalis and were compared with those in hatchlings of two other cephalopod species. The early differentiation of olfactory structures and the peculiar development of the epidermis with its sensory cells provide new perspectives for comparisons of developmental processes among molluscs.


Assuntos
Vias Aferentes/embriologia , Epiderme/embriologia , Epiderme/crescimento & desenvolvimento , Epiderme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sepia , Animais , Animais Recém-Nascidos , Cefalópodes/classificação , Cefalópodes/embriologia , Cefalópodes/metabolismo , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Embrião não Mamífero , Epiderme/inervação , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Sensação/fisiologia , Sepia/anatomia & histologia , Sepia/embriologia , Sepia/crescimento & desenvolvimento
3.
Invert Neurosci ; 14(1): 13-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24385049

RESUMO

Cephalopods have been utilised in neuroscience research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentiation) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of "live cephalopods" became regulated within the European Union by Directive 2010/63/EU on the "Protection of Animals used for Scientific Purposes", giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs principles (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce "guidelines" and the potential contribution of neuroscience research to cephalopod welfare.


Assuntos
Experimentação Animal/normas , Bem-Estar do Animal/normas , Cefalópodes , Neurociências/normas , Animais , União Europeia , Guias como Assunto
4.
BMC Biol ; 11: 53, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23631531

RESUMO

BACKGROUND: A key to understanding the evolution of the nervous system on a large phylogenetic scale is the identification of homologous neuronal types. Here, we focus this search on the sensory and motor neurons of bilaterians, exploiting their well-defined molecular signatures in vertebrates. Sensorimotor circuits in vertebrates are of two types: somatic (that sense the environment and respond by shaping bodily motions) and visceral (that sense the interior milieu and respond by regulating vital functions). These circuits differ by a small set of largely dedicated transcriptional determinants: Brn3 is expressed in many somatic sensory neurons, first and second order (among which mechanoreceptors are uniquely marked by the Brn3+/Islet1+/Drgx+ signature), somatic motoneurons uniquely co-express Lhx3/4 and Mnx1, while the vast majority of neurons, sensory and motor, involved in respiration, blood circulation or digestion are molecularly defined by their expression and dependence on the pan-visceral determinant Phox2b. RESULTS: We explore the status of the sensorimotor transcriptional code of vertebrates in mollusks, a lophotrochozoa clade that provides a rich repertoire of physiologically identified neurons. In the gastropods Lymnaea stagnalis and Aplysia californica, we show that homologues of Brn3, Drgx, Islet1, Mnx1, Lhx3/4 and Phox2b differentially mark neurons with mechanoreceptive, locomotory and cardiorespiratory functions. Moreover, in the cephalopod Sepia officinalis, we show that Phox2 marks the stellate ganglion (in line with the respiratory--that is, visceral--ancestral role of the mantle, its target organ), while the anterior pedal ganglion, which controls the prehensile and locomotory arms, expresses Mnx. CONCLUSIONS: Despite considerable divergence in overall neural architecture, a molecular underpinning for the functional allocation of neurons to interactions with the environment or to homeostasis was inherited from the urbilaterian ancestor by contemporary protostomes and deuterostomes.


Assuntos
Evolução Biológica , Neurônios/citologia , Vertebrados/metabolismo , Vísceras/inervação , Animais , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/metabolismo , Lymnaea/citologia , Lymnaea/metabolismo , Mecanorreceptores/metabolismo , Camundongos , Neurônios/metabolismo , Ratos , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Sepia/citologia , Sepia/metabolismo , Transcrição Gênica
5.
Dev Dyn ; 242(5): 560-71, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23381735

RESUMO

BACKGROUND: In the cuttlefish Sepia officinalis, iridescence is known to play a role in patterning and communication. In iridophores, iridosomes are composed of reflectins, a protein family, which show great diversity in all cephalopod species. Iridosomes are established before hatching, but very little is known about how these cells are established, their distribution in embryos, or the contribution of each reflectin gene to iridosome structures. RESULTS: Six reflectin genes are expressed during the development of iridosomes in Sepia officinalis. We show that they are expressed in numerous parts of the body before hatching. Evidence of the colocalization of two different genes of reflectin was found. Curiously, reflectin mRNA expression was no longer detectable at the time of hatchling, while reflectin proteins were present and gave rise to visible iridescence. CONCLUSION: These data suggest that several different forms of reflectins are simultaneously used to produce iridescence in S. officinalis and that mRNA production and translation are decoupled in time during iridosome development.


Assuntos
Padronização Corporal/genética , Decapodiformes , Pigmentação/genética , Proteínas/genética , Sequência de Aminoácidos , Animais , Decapodiformes/embriologia , Decapodiformes/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Luminescência , Dados de Sequência Molecular , Família Multigênica , Epitélio Pigmentado Ocular/embriologia , Epitélio Pigmentado Ocular/metabolismo , Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Pigmentação da Pele/genética , Pigmentação da Pele/fisiologia
6.
J Comp Neurol ; 521(7): 1482-96, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23047428

RESUMO

Among the Lophotrochozoa, centralization of the nervous system reaches an exceptional level of complexity in cephalopods, where the typical molluscan ganglia become highly developed and fuse into hierarchized lobes. It is known that ganglionic primordia initially emerge early and simultaneously during cephalopod embryogenesis but no data exist on the process of neuron differentiation in this group. We searched for members of the elav/hu family in the cuttlefish Sepia officinalis, since they are one of the first genetic markers of postmitotic neural cells. Two paralogs were identified and the expression of the most neural-specific gene, Sof-elav1, was characterized during embryogenesis. Sof-elav1 is expressed in all ganglia at one time of development, which provides the first genetic map of neurogenesis in a cephalopod. Our results unexpectedly revealed that Sof-elav1 expression is not similar and not coordinated in all the prospective ganglia. Both palliovisceral ganglia show extensive Sof-elav1 expression soon after emergence, showing that most of their cells differentiate into neurons at an early stage. On the contrary, other ganglia, and especially both cerebral ganglia that contribute to the main parts of the brain learning centers, show a late extensive Sof-elav1 expression. These delayed expressions in ganglia suggest that most ganglionic cells retain their proliferative capacities and postpone differentiation. In other molluscs, where a larval nervous system predates the development of the definitive adult nervous system, cerebral ganglia are among the first to mature. Thus, such a difference may constitute a cue in understanding the peculiar brain evolution in cephalopods.


Assuntos
Gânglios dos Invertebrados/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurogênese/fisiologia , Sepia/embriologia , Animais , Proteínas ELAV/genética , Embrião não Mamífero , Desenvolvimento Embrionário , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sepia/genética
7.
Commun Integr Biol ; 6(6): e26035, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24505501

RESUMO

The cuttlefish Sepia officinalis mate and spawn in the intertidal zone where eggs are exposed during low tide to osmotic stress. Embryonic outer yolk sac is a putative site for osmoregulation of young S. officinalis embryos. By using electrophysiological recordings and immunostaining we showed, (i) that the chorion is only a passive barrier for ions, since large molecules could not pass through it, (ii) that a complex transepithelial potential difference occurs through the yolk epithelium, (iii) that ionocyte-like cells and Na(+)/K(+)-ATPases were localized in the yolk epithelium and (iv) that ouabain sensitive Na(+)/K(+)-ATPase activity could participate to this yolk polarization. These data warrant further study on the role of ion transport systems of this epithelium in the osmoregulation processes in S. officinalis embryos.

8.
Am J Physiol Regul Integr Comp Physiol ; 303(4): R427-37, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22647292

RESUMO

Cephalopods have relatively high rates of protein synthesis compared to rates of protein degradation, along with minimal carbohydrate and lipid reserves. During food deprivation on board protein is catabolized as a metabolic fuel. The aim of the current study was to assess whether biochemical indices of protein synthesis and proteolytic mechanisms were altered in cuttlefish, Sepia officinalis, starved for 7 days. In mantle muscle, food deprivation is associated with a decrease in protein synthesis, as indicated by a decrease in the total RNA level and dephosphorylation of key signaling molecules, such as the eukaryote binding protein, 4E-BP1 (regulator of translation) and Akt. The ubiquitination-proteasome system (UPS) is activated as shown by an increase in the levels of proteasome ß-subunit mRNA, polyubiquitinated protein, and polyubiquitin mRNA. As well, cathepsin activity levels are increased, suggesting increased proteolysis through the lysosomal pathway. Together, these mechanisms could supply amino acids as metabolic fuels. In gill, the situation is quite different. It appears that during the first stages of starvation, both protein synthesis and protein degradation are enhanced in gill. This is based upon increased phosphorylation of 4E-BP1 and enhanced levels of UPS indicators, especially 20S proteasome activity and polyubiquitin mRNA. It is proposed that an increased protein turnover is related to gill remodeling perhaps to retain essential hemolymph-borne compounds.


Assuntos
Brânquias/metabolismo , Músculo Esquelético/metabolismo , Biossíntese de Proteínas/fisiologia , Sepia/metabolismo , Animais , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Privação de Alimentos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepia/genética , Transdução de Sinais/fisiologia
9.
Gene ; 498(2): 203-11, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22548232

RESUMO

New molecular resources regarding the so-called "non-standard models" in biology extend the present knowledge and are essential for molecular evolution and diversity studies (especially during the development) and evolutionary inferences about these zoological groups, or more practically for their fruitful management. Sepia officinalis, an economically important cephalopod species, is emerging as a new lophotrochozoan developmental model. We developed a large set of expressed sequence tags (ESTs) from embryonic stages of S. officinalis, yielding 19,780 non-redundant sequences (NRS). Around 75% of these sequences have no homologs in existing available databases. This set is the first developmental ESTs library in cephalopods. By exploring these NRS for tubulin, a generic protein family, and reflectin, a cephalopod specific protein family,we point out for both families a striking molecular diversity in S. officinalis.


Assuntos
Etiquetas de Sequências Expressas , Sepia/genética , Tubulina (Proteína)/genética , Actinas/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/fisiologia , Feminino , Biblioteca Gênica , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Sepia/embriologia
10.
Gene Expr Patterns ; 12(3-4): 109-16, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22365924

RESUMO

The origin of cerebral structures is a major issue in both developmental and evolutionary biology. Among Lophotrochozoans, cephalopods present both a derived nervous system and an original body plan, therefore they constitute a key model to study the evolution of nervous system and molecular processes that control the neural organization. We characterized a partial sequence of an ortholog of otx2 in Sepia officinalis embryos, a gene specific to the anterior nervous system and eye development. By in situ hybridization, we assessed the expression pattern of otx2 during S. officinalis organogenesis and we showed that otx is expressed (1) in the eyes, from early to late developmental stages as observed in other species (2) in the nervous system during late developmental stages. The otx ortholog does not appear to be required for the precocious emergence of the nervous ganglia in cephalopods and is later expressed only in the most anterior ganglia of the future brain. Finally, otx expression becomes restricted to localized part of the brain, where it could be involved in the functional specification of the central nervous system of S. officinalis. These results suggest a conserved involvement of otx in eye maturation and development of the anterior neural structures in S. officinalis.


Assuntos
Encéfalo/metabolismo , Olho/metabolismo , Fatores de Transcrição Otx/genética , Sepia/genética , Sequência de Aminoácidos , Animais , Encéfalo/embriologia , Olho/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Dados de Sequência Molecular , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Organogênese/genética , Fatores de Transcrição Otx/metabolismo , Sepia/embriologia
11.
Dev Dyn ; 241(2): 390-402, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22275228

RESUMO

BACKGROUND: Nitric oxide (NO) is implied in many important biological processes in all metazoans from porifera to chordates. In the cuttlefish Sepia officinalis NO plays a key role in the defense system and neurotransmission. RESULTS: Here, we detected for the first time NO, NO synthase (NOS) and transcript levels during the development of S. officinalis. The spatial pattern of NO and NOS is very dynamic, it begins during organogenesis in ganglia and epithelial tissues, as well as in sensory cells. At later stages, NO and NOS appear in organs and/or structures, including Hoyle organ, gills and suckers. Temporal expression of NOS, followed by real-time PCR, changes during development reaching the maximum level of expression at stage 26. CONCLUSIONS: Overall these data suggest the involvement of NO during cuttlefish development in different fundamental processes, such as differentiation of neural and nonneural structures, ciliary beating, sensory cell maintaining, and organ functioning.


Assuntos
Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Sepia/embriologia , Animais , Brânquias/embriologia , Brânquias/enzimologia , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Óxido Nítrico Sintase/genética , Sepia/metabolismo
12.
Stand Genomic Sci ; 7(1): 175-88, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23451296

RESUMO

The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, "Paths to Cephalopod Genomics- Strategies, Choices, Organization," held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described in this white paper.

13.
Zoology (Jena) ; 114(2): 113-22, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21397478

RESUMO

The FMRFamide-related peptide (FaRP) family includes a wide range of neuropeptides that have a role in many biological functions. In cephalopods, these peptides intervene in the peculiar body patterning system used for communication and camouflage. This system is particularly well developed in the cuttlefish and is functional immediately after hatching (stage 30). In this study, we investigate when and how the neural structures involved in the control of body patterning emerge and combine during Sepia embryogenesis, by studying the expression or the production of FaRPs. We detected FaRP expression and production in the nervous system of embryos from the beginning of organogenesis (stage 16). The wider FaRP expression was observed concomitantly with brain differentiation (around stage 22). Until hatching, FaRP-positive cells were located in specific areas of the central and peripheral nervous system (CNS and PNS). Most of these areas were implicated in the control of body patterns, suggesting that FaRPs are involved in all parts of the neural body pattern control system, from the 'receptive areas' via the CNS to the chromatophore effectors.


Assuntos
FMRFamida/fisiologia , Sepia/embriologia , Animais , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/imunologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Microscopia , Organogênese , Sistema Nervoso Periférico/anatomia & histologia , Sistema Nervoso Periférico/embriologia , Sistema Nervoso Periférico/imunologia , Sepia/anatomia & histologia , Sepia/imunologia , Pigmentação da Pele
14.
Gene Expr Patterns ; 9(7): 461-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19683074

RESUMO

Cephalopods show a very complex nervous system, particularly derived when compared to other molluscs. In vertebrates, the setting up of the nervous system depends on genes such as Shh and Pax6. In this paper we assess Shh and Pax6 expression patterns during Sepia officinalis development by whole-mount in situ hybridization. In vertebrates, Shh has been shown to indirectly inhibit Pax6. This seems to be the case in cephalopods as the expression patterns of these genes do not overlap during S. officinalis development. Pax6 is expressed in the optic region and brain and Shh in gut structures, as already seen in vertebrates and Drosophila. Thus, both genes show expression in analogous structures in vertebrates. Surprisingly, they also exhibit unconventional expressions such as in gills for Pax6 and ganglia borders for Shh. They are also expressed in many cephalopods' derived characters among molluscs as in arm suckers for Pax6 and beak producing tissues, nuchal organ and neural cord of the arms for Shh. This new data supports the fact that molecular control patterns have evolved with the appearance of morphological novelties in cephalopods as shown in this new model, S. officinalis.


Assuntos
Embrião não Mamífero/metabolismo , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Sepia/embriologia , Animais , Cefalópodes/embriologia , Desenvolvimento Embrionário , Proteínas do Olho/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/metabolismo , Morfogênese , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Sepia/genética , Sepia/metabolismo
15.
Dev Dyn ; 237(7): 1944-51, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18570246

RESUMO

Cephalopods are emerging as new developmental models. These lophotrochozoans exhibit numerous morphological peculiarities among molluscs, not only regarding their nervous system but also regarding their circulatory system, which is closed and includes three hearts. However, the molecular control of cardiac myogenesis in lophotrochozoans is largely unknown. In other groups, cardiac development depends on numerous different genes, among them NK4 seems to have a well-conserved function throughout evolution. In this study, we assessed the expression pattern of SoNK4, the Sepia officinalis NK4 homologue, during Sepia officinalis development by whole-mount in situ hybridization. SoNK4 expression begins before morphogenesis, is not restricted to prospective cardiac muscles but above all concerns mesodermal structures potentially rich in muscles such as arms and mantle. These results suggest an important role of SoNK4 in locomotory (somatic) muscles development of Sepia officinalis, and thus a new role for NK4.


Assuntos
Fator de Crescimento de Hepatócito/fisiologia , Desenvolvimento Muscular/fisiologia , Sepia/embriologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Fator de Crescimento de Hepatócito/genética , Desenvolvimento Muscular/genética , Sepia/genética
17.
C R Biol ; 327(2): 133-8, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15060984

RESUMO

Nautiloids, the externally shelled cephalopods of Cambrian origin, are the most ancient lineage among extant cephalopods. Their ancestral characters are explored based on morphological and molecular data (18S rDNA sequence) to investigate the evolution of present cephalopod lineages. Among molluscs, nautilus 18S rDNA gene is the longest reported so far, due to large nucleotidic insertions. By comparison with other 18S sequences, the complete gene of N. macromphalus helps to clarify the taxonomic status of the three universally recognised Nautilus species. The range of interspecific molecular differences supports separation of the present species into two surviving ectocochleate genera, Nautilus and Allonautilus. Nautiloid 18S is considered as corresponding to the ancestral form of 18S as is the number of chromosomes in Nautilus (52), the lowest among cephalopods. Comparison of karyological characteristics amongst cephalopods in a phylogenetic context suggests a possible correlation between duplication events and lineage divergence.


Assuntos
Moluscos/classificação , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromossomos/genética , DNA Ribossômico/genética , Genes , Cariotipagem , Dados de Sequência Molecular , Moluscos/genética , Conformação de Ácido Nucleico , Filogenia , RNA Ribossômico 18S/química , RNA Ribossômico 18S/genética , Alinhamento de Sequência , Homologia de Sequência , Especificidade da Espécie
18.
J Mol Evol ; 57(5): 501-14, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14738308

RESUMO

Type I collagen in tetrapods is usually a heterotrimeric molecule composed of two alpha1 and one alpha2 chains. In some teleosts, a third alpha chain has been identified by chromatography, suggesting that type I collagen should also exist as an alpha1(I)alpha2(I)alpha3(I) heterotrimer. We prepared, from zebrafish, three distinct cDNAs identified to be those of the collagen alpha1(I), alpha2(I), and alpha3(I) chains. In this study on the evolution of fibrillar collagen alpha chains and their relationships, an exhaustive phylogenetic analysis, using vertebrate fibrillar collagen sequences, showed that each alpha chain constitutes a monophyletic cluster. Results obtained with the newly isolated sequences of the zebrafish showed that the alpha3(I) chain is phylogenetically close to the alpha1(I) chain and support the hypothesis that the alpha3(I) chain arose from a duplication of the alpha1(I) gene. The duplication might occur during the duplication of the actinopterygian genome, soon after the divergence of actinopterygians and sarcopterygians, a hypothesis supported by the demonstration of a syntenic evolution between a set of fibrillar collagen genes and Hox clusters in mammals. An evolutionary scenario is proposed in which phylogenetic relationships of the alpha chains of fibrillar collagens of vertebrates could be related to Hox cluster history.


Assuntos
Colágeno Tipo I/genética , Evolução Molecular , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Genes Homeobox , Dados de Sequência Molecular , Família Multigênica , Filogenia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...