Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(3): e14164, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36967905

RESUMO

We investigated the feasibility of designing and fabricating novel broadband radiofrequency (RF) absorbers for use in cavity-backed antennas. Fabricating the absorber involved a multi-material additive manufacturing (AM) approach that combined two polymer filaments: a low-loss dielectric filament and a lossy carbon-loaded filament. An iterative optimization algorithm was developed to deploy these filaments and create gradient distributions of material properties that minimize reflectance over a desired frequency band and a range of incident angles to achieve wideband electromagnetic absorption. The chosen material profiles were effectively realized using a spatially varying subwavelength lattice structure printed via fused filament fabrication. Experimentally, validation results demonstrated low reflectance over a wide frequency band, 10 to 40 GHz, and a range of incident angles, 0°-50°. Finally, this printed multi-material absorber was integrated within a cavity-backed spiral antenna and used to suppress backlobe radiation while maintaining an acceptable radiation pattern in the forward direction. While this study investigated cavity-backed antennas, these computational and experimental methods are potentially useful for a wide range of other applications.

2.
Glob Chang Biol ; 27(20): 5070-5083, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34297435

RESUMO

Arctic plants are adapted to climatic variability, but their long-term responses to warming remain unclear. Responses may occur by range shifts, phenological adjustments in growth and reproduction, or both. Here, we compare distribution and phenology of 83 arctic and boreal mountain species, sampled identically in the early 20th (1917-1919) and 21st centuries (2017-2018) from a region of northern Sweden that has warmed significantly. We test two compensatory hypotheses to high-latitude warming-upward shifts in distribution, and earlier or extended growth and reproduction. For distribution, we show dramatic upward migration by 69% of species, averaging 6.1 m per decade, especially boreal woodland taxa whose upward expansion has reduced arctic montane habitat by 30%. Twenty percent of summit species showed distributional shifts but downward, especially moisture-associated snowbed flora. For phenology, we detected wide inter-annual variability in the onset of leafing and flowering in both eras. However, there was no detectable change in growing-season length, relating to two mechanisms. First, plot-level snow melt data starting in 1917 demonstrated that melt date, rather than vernal temperatures, better predicts plant emergence, with snow melt influenced by warmer years having greater snowfall-warmer springs did not always result in earlier emergence because snowbeds can persist longer. Second, the onset of reproductive senescence between eras was similar, even when plant emergence was earlier by a month, possibly due to intensified summer heat stress or hard-wired 'canalization' where senescence occurs regardless of summer temperature. Migrations in this system have possibly buffered arctic species against displacement by boreal expansion and warming, but ongoing temperature increases, woody plant invasion, and a potential lack of flexibility in timing of senescence may foreshadow challenges.


Assuntos
Ecossistema , Neve , Regiões Árticas , Mudança Climática , Estações do Ano , Temperatura
3.
J Anim Ecol ; 89(3): 808-816, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31677271

RESUMO

Cities represent humanity's most intense impact on our planet, with more than half of all humans now residing in urban areas. Indeed, urbanization has well-understood impacts on both individual species and general patterns of biodiversity. However, species do not exist in isolation, but are instead members of complex interaction networks that shape patterns of diversity and influence ecosystem services. Despite the importance of species interaction for creating patterns of diversity, we do not understand how urbanization alters these interactions. Here, we investigate how an interaction network (food web) is reshaped by urbanization. We show that, consistent with theory, cities tend to support less diverse ecological communities, and rare species that interact with few species are particularly sensitive to urbanization. As a result, remnant urban food webs tend to have more interactions per species and greater connectance, creating more integrated interaction networks. We discuss the implications of this food web reshaping for ecological stability, eco-evolutionary dynamics, and the joining of interaction networks and conservation planning. The role of cities in reshaping interaction networks provides an interesting study of food web (dis)assembly, while also shedding light on new approaches to applied conservation issues.


Assuntos
Cadeia Alimentar , Urbanização , Animais , Biodiversidade , Cidades , Ecossistema , Humanos
4.
Ecol Evol ; 9(7): 3770-3783, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31015965

RESUMO

Gene flow between populations can allow the spread of beneficial alleles and genetic diversity between populations, with importance to conservation, invasion biology, and agriculture. Levels of gene flow between populations vary not only with distance, but also with divergence in reproductive phenology. Since phenology is often locally adapted, arriving migrants may be reproductively out of synch with residents, which can depress realized gene flow. In flowering plants, the potential impact of phenological divergence on hybridization between populations can be predicted from overlap in flowering schedules-the daily count of flowers capable of pollen exchange-between a resident and migrant population. The accuracy of this prospective hybridization estimate, based on parental phenotypes, rests upon the assumptions of unbiased pollen transfer between resident and migrant active flowers. We tested the impact of phenological divergence on resident-migrant mating frequencies in experiments that mimicked a single large gene flow event. We first prospectively estimated mating frequencies two lines of Brassica rapaselected or early and late flowering. We then estimated realized mating frequencies retrospectively through progeny testing. The two estimates strongly agreed in a greenhouse experiment, where procedures ensured saturating, unbiased pollination. Under natural pollination in the field, the rate of resident-migrant mating, was lower than estimated by phenological divergence alone, although prospective and retrospective estimates were correlated. In both experiments, differences between residents and migrants in flowering schedule shape led to asymmetric hybridization. Results suggest that a prospective estimate of hybridization based on mating schedules can be a useful, although imperfect, tool for evaluating potential gene flow. They also illustrate the impact of mating phenology on the magnitude and symmetry of reproductive isolation.

5.
Evolution ; 72(9): 1863-1873, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29972241

RESUMO

Urbanization is an important component of global change. Urbanization affects species interactions, but the evolutionary implications are rarely studied. We investigate the evolutionary consequences of a common pattern: the loss of high trophic-level species in urban areas. Using a gall-forming fly, Eurosta solidaginis, and its natural enemies that select for opposite gall sizes, we test for patterns of enemy loss, selection, and local adaptation along five urbanization gradients. Eurosta declined in urban areas, as did predation by birds, which preferentially consume gallmakers that induce large galls. These declines were linked to changes in habitat availability, namely reduced forest cover in urban areas. Conversely, a parasitoid that attacks gallmakers that induce small galls was unaffected by urbanization. Changes in patterns of attack by birds and parasitoids resulted in stronger directional selection, but loss of stabilizing selection in urban areas, a pattern which we suggest may be general. Despite divergent selective regimes, gall size did not very systematically with urbanization, suggesting but not conclusively demonstrating that environmental differences, gene flow, or drift, may have prevented the adaptive divergence of phenotypes. We argue that the evolutionary effects of urbanization will have predictable consequences for patterns of species interactions and natural selection.


Assuntos
Adaptação Fisiológica , Distribuição Animal , Comportamento Predatório , Seleção Genética , Solidago/parasitologia , Tephritidae/fisiologia , Urbanização , Animais , Evolução Biológica , Interações Hospedeiro-Parasita , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...