Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Am J Hum Genet ; 111(7): 1282-1300, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834072

RESUMO

Transcriptomics is a powerful tool for unraveling the molecular effects of genetic variants and disease diagnosis. Prior studies have demonstrated that choice of genome build impacts variant interpretation and diagnostic yield for genomic analyses. To identify the extent genome build also impacts transcriptomics analyses, we studied the effect of the hg19, hg38, and CHM13 genome builds on expression quantification and outlier detection in 386 rare disease and familial control samples from both the Undiagnosed Diseases Network and Genomics Research to Elucidate the Genetics of Rare Disease Consortium. Across six routinely collected biospecimens, 61% of quantified genes were not influenced by genome build. However, we identified 1,492 genes with build-dependent quantification, 3,377 genes with build-exclusive expression, and 9,077 genes with annotation-specific expression across six routinely collected biospecimens, including 566 clinically relevant and 512 known OMIM genes. Further, we demonstrate that between builds for a given gene, a larger difference in quantification is well correlated with a larger change in expression outlier calling. Combined, we provide a database of genes impacted by build choice and recommend that transcriptomics-guided analyses and diagnoses are cross referenced with these data for robustness.


Assuntos
Genoma Humano , RNA-Seq , Humanos , RNA-Seq/métodos , Genômica/métodos , Transcriptoma , Doenças Raras/genética , Doenças Raras/diagnóstico , Perfilação da Expressão Gênica/métodos
2.
J Exp Med ; 221(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38780621

RESUMO

Nucleic acid-sensing Toll-like receptors (TLR) 3, 7/8, and 9 are key innate immune sensors whose activities must be tightly regulated to prevent systemic autoimmune or autoinflammatory disease or virus-associated immunopathology. Here, we report a systematic scanning-alanine mutagenesis screen of all cytosolic and luminal residues of the TLR chaperone protein UNC93B1, which identified both negative and positive regulatory regions affecting TLR3, TLR7, and TLR9 responses. We subsequently identified two families harboring heterozygous coding mutations in UNC93B1, UNC93B1+/T93I and UNC93B1+/R336C, both in key negative regulatory regions identified in our screen. These patients presented with cutaneous tumid lupus and juvenile idiopathic arthritis plus neuroinflammatory disease, respectively. Disruption of UNC93B1-mediated regulation by these mutations led to enhanced TLR7/8 responses, and both variants resulted in systemic autoimmune or inflammatory disease when introduced into mice via genome editing. Altogether, our results implicate the UNC93B1-TLR7/8 axis in human monogenic autoimmune diseases and provide a functional resource to assess the impact of yet-to-be-reported UNC93B1 mutations.


Assuntos
Autoimunidade , Animais , Humanos , Camundongos , Autoimunidade/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Análise Mutacional de DNA , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Mutação , Feminino , Masculino , Camundongos Endogâmicos C57BL , Células HEK293 , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia
3.
Genet Med ; : 101166, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38767059

RESUMO

PURPOSE: The function of FAM177A1 and its relationship to human disease is largely unknown. Recent studies have demonstrated FAM177A1 to be a critical immune-associated gene. One previous case study has linked FAM177A1 to a neurodevelopmental disorder in four siblings. METHODS: We identified five individuals from three unrelated families with biallelic variants in FAM177A1. The physiological function of FAM177A1 was studied in a zebrafish model organism and human cell lines with loss-of-function variants similar to the affected cohort. RESULTS: These individuals share a characteristic phenotype defined by macrocephaly, global developmental delay, intellectual disability, seizures, behavioral abnormalities, hypotonia, and gait disturbance. We show that FAM177A1 localizes to the Golgi complex in mammalian and zebrafish cells. Intersection of the RNA-seq and metabolomic datasets from FAM177A1-deficient human fibroblasts and whole zebrafish larvae demonstrated dysregulation of pathways associated with apoptosis, inflammation, and negative regulation of cell proliferation. CONCLUSION: Our data sheds light on the emerging function of FAM177A1 and defines FAM177A1-related neurodevelopmental disorder as a new clinical entity.

4.
medRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585781

RESUMO

Rare structural variants (SVs) - insertions, deletions, and complex rearrangements - can cause Mendelian disease, yet they remain difficult to accurately detect and interpret. We sequenced and analyzed Oxford Nanopore long-read genomes of 68 individuals from the Undiagnosed Disease Network (UDN) with no previously identified diagnostic mutations from short-read sequencing. Using our optimized SV detection pipelines and 571 control long-read genomes, we detected 716 long-read rare (MAF < 0.01) SV alleles per genome on average, achieving a 2.4x increase from short-reads. To characterize the functional effects of rare SVs, we assessed their relationship with gene expression from blood or fibroblasts from the same individuals, and found that rare SVs overlapping enhancers were enriched (LOR = 0.46) near expression outliers. We also evaluated tandem repeat expansions (TREs) and found 14 rare TREs per genome; notably these TREs were also enriched near overexpression outliers. To prioritize candidate functional SVs, we developed Watershed-SV, a probabilistic model that integrates expression data with SV-specific genomic annotations, which significantly outperforms baseline models that don't incorporate expression data. Watershed-SV identified a median of eight high-confidence functional SVs per UDN genome. Notably, this included compound heterozygous deletions in FAM177A1 shared by two siblings, which were likely causal for a rare neurodevelopmental disorder. Our observations demonstrate the promise of integrating long-read sequencing with gene expression towards improving the prioritization of functional SVs and TREs in rare disease patients.

5.
Ann Clin Transl Neurol ; 11(3): 629-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311799

RESUMO

OBJECTIVE: ACTN2, encoding alpha-actinin-2, is essential for cardiac and skeletal muscle sarcomeric function. ACTN2 variants are a known cause of cardiomyopathy without skeletal muscle involvement. Recently, specific dominant monoallelic variants were reported as a rare cause of core myopathy of variable clinical onset, although the pathomechanism remains to be elucidated. The possibility of a recessively inherited ACTN2-myopathy has also been proposed in a single series. METHODS: We provide clinical, imaging, and histological characterization of a series of patients with a novel biallelic ACTN2 variant. RESULTS: We report seven patients from five families with a recurring biallelic variant in ACTN2: c.1516A>G (p.Arg506Gly), all manifesting with a consistent phenotype of asymmetric, progressive, proximal, and distal lower extremity predominant muscle weakness. None of the patients have cardiomyopathy or respiratory insufficiency. Notably, all patients report Palestinian ethnicity, suggesting a possible founder ACTN2 variant, which was confirmed through haplotype analysis in two families. Muscle biopsies reveal an underlying myopathic process with disruption of the intermyofibrillar architecture, Type I fiber predominance and atrophy. MRI of the lower extremities demonstrate a distinct pattern of asymmetric muscle involvement with selective involvement of the hamstrings and adductors in the thigh, and anterior tibial group and soleus in the lower leg. Using an in vitro splicing assay, we show that c.1516A>G ACTN2 does not impair normal splicing. INTERPRETATION: This series further establishes ACTN2 as a muscle disease gene, now also including variants with a recessive inheritance mode, and expands the clinical spectrum of actinopathies to adult-onset progressive muscle disease.


Assuntos
Cardiomiopatias , Doenças Musculares , Adulto , Humanos , Doenças Musculares/genética , Doenças Musculares/patologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Actinina/genética , Fenótipo
6.
medRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260490

RESUMO

Transcriptomics is a powerful tool for unraveling the molecular effects of genetic variants and disease diagnosis. Prior studies have demonstrated that choice of genome build impacts variant interpretation and diagnostic yield for genomic analyses. To identify the extent genome build also impacts transcriptomics analyses, we studied the effect of the hg19, hg38, and CHM13 genome builds on expression quantification and outlier detection in 386 rare disease and familial control samples from both the Undiagnosed Diseases Network (UDN) and Genomics Research to Elucidate the Genetics of Rare Disease (GREGoR) Consortium. We identified 2,800 genes with build-dependent quantification across six routinely-collected biospecimens, including 1,391 protein-coding genes and 341 known rare disease genes. We further observed multiple genes that only have detectable expression in a subset of genome builds. Finally, we characterized how genome build impacts the detection of outlier transcriptomic events. Combined, we provide a database of genes impacted by build choice, and recommend that transcriptomics-guided analyses and diagnoses are cross-referenced with these data for robustness.

7.
Genet Med ; 25(4): 100353, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36481303

RESUMO

PURPOSE: Next-generation sequencing (NGS) has revolutionized the diagnostic process for rare/ultrarare conditions. However, diagnosis rates differ between analytical pipelines. In the National Institutes of Health-Undiagnosed Diseases Network (UDN) study, each individual's NGS data are concurrently analyzed by the UDN sequencing core laboratory and the clinical sites. We examined the outcomes of this practice. METHODS: A retrospective review was performed at 2 UDN clinical sites to compare the variants and diagnoses/candidate genes identified with the dual analyses of the NGS data. RESULTS: In total, 95 individuals had 100 diagnoses/candidate genes. There was 59% concordance between the UDN sequencing core laboratories and the clinical sites in identifying diagnoses/candidate genes. The core laboratory provided more diagnoses, whereas the clinical sites prioritized more research variants/candidate genes (P < .001). The clinical sites solely identified 15% of the diagnoses/candidate genes. The differences between the 2 pipelines were more often because of variant prioritization disparities than variant detection. CONCLUSION: The unique dual analysis of NGS data in the UDN synergistically enhances outcomes. The core laboratory provided a clinical analysis with more diagnoses and the clinical sites prioritized more research variants/candidate genes. Implementing such concurrent dual analyses in other genomic research studies and clinical settings can improve both variant detection and prioritization.


Assuntos
Doenças não Diagnosticadas , Estados Unidos/epidemiologia , Humanos , Genômica , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento de Nucleotídeos em Larga Escala , Laboratórios
8.
Am J Hum Genet ; 109(12): 2270-2282, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368327

RESUMO

An Xq22.2 region upstream of PLP1 has been proposed to underly a neurological disease trait when deleted in 46,XX females. Deletion mapping revealed that heterozygous deletions encompassing the smallest region of overlap (SRO) spanning six Xq22.2 genes (BEX3, RAB40A, TCEAL4, TCEAL3, TCEAL1, and MORF4L2) associate with an early-onset neurological disease trait (EONDT) consisting of hypotonia, intellectual disability, neurobehavioral abnormalities, and dysmorphic facial features. None of the genes within the SRO have been associated with monogenic disease in OMIM. Through local and international collaborations facilitated by GeneMatcher and Matchmaker Exchange, we have identified and herein report seven de novo variants involving TCEAL1 in seven unrelated families: three hemizygous truncating alleles; one hemizygous missense allele; one heterozygous TCEAL1 full gene deletion; one heterozygous contiguous deletion of TCEAL1, TCEAL3, and TCEAL4; and one heterozygous frameshift variant allele. Variants were identified through exome or genome sequencing with trio analysis or through chromosomal microarray. Comparison with previously reported Xq22 deletions encompassing TCEAL1 identified a more-defined syndrome consisting of hypotonia, abnormal gait, developmental delay/intellectual disability especially affecting expressive language, autistic-like behavior, and mildly dysmorphic facial features. Additional features include strabismus, refractive errors, variable nystagmus, gastroesophageal reflux, constipation, dysmotility, recurrent infections, seizures, and structural brain anomalies. An additional maternally inherited hemizygous missense allele of uncertain significance was identified in a male with hypertonia and spasticity without syndromic features. These data provide evidence that TCEAL1 loss of function causes a neurological rare disease trait involving significant neurological impairment with features overlapping the EONDT phenotype in females with the Xq22 deletion.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Feminino , Humanos , Masculino , Transtorno Autístico/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Hipotonia Muscular/genética , Hipotonia Muscular/complicações , Fenótipo , Síndrome , Fatores de Transcrição/genética
9.
Sci Immunol ; 7(75): eabi4611, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112693

RESUMO

Dipeptidyl peptidase 9 (DPP9) is a direct inhibitor of NLRP1, but how it affects inflammasome regulation in vivo is not yet established. Here, we report three families with immune-associated defects, poor growth, pancytopenia, and skin pigmentation abnormalities that segregate with biallelic DPP9 rare variants. Using patient-derived primary cells and biochemical assays, these variants were shown to behave as hypomorphic or knockout alleles that failed to repress NLRP1. The removal of a single copy of Nlrp1a/b/c, Asc, Gsdmd, or Il-1r, but not Il-18, was sufficient to rescue the lethality of Dpp9 mutant neonates in mice. Similarly, dpp9 deficiency was partially rescued by the inactivation of asc, an obligate downstream adapter of the NLRP1 inflammasome, in zebrafish. These experiments suggest that the deleterious consequences of DPP9 deficiency were mostly driven by the aberrant activation of the canonical NLRP1 inflammasome and IL-1ß signaling. Collectively, our results delineate a Mendelian disorder of DPP9 deficiency driven by increased NLRP1 activity as demonstrated in patient cells and in two animal models of the disease.


Assuntos
Proteínas Reguladoras de Apoptose , Dipeptidil Peptidases e Tripeptidil Peptidases , Inflamassomos , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Inflamassomos/metabolismo , Interleucina-1/metabolismo , Proteínas NLR/genética , Peixe-Zebra
10.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34291734

RESUMO

Mutations in HNRNPA1 encoding heterogeneous nuclear ribonucleoprotein (hnRNP) A1 are a rare cause of amyotrophic lateral sclerosis (ALS) and multisystem proteinopathy (MSP). hnRNPA1 is part of the group of RNA-binding proteins (RBPs) that assemble with RNA to form RNPs. hnRNPs are concentrated in the nucleus and function in pre-mRNA splicing, mRNA stability, and the regulation of transcription and translation. During stress, hnRNPs, mRNA, and other RBPs condense in the cytoplasm to form stress granules (SGs). SGs are implicated in the pathogenesis of (neuro-)degenerative diseases, including ALS and inclusion body myopathy (IBM). Mutations in RBPs that affect SG biology, including FUS, TDP-43, hnRNPA1, hnRNPA2B1, and TIA1, underlie ALS, IBM, and other neurodegenerative diseases. Here, we characterize 4 potentially novel HNRNPA1 mutations (yielding 3 protein variants: *321Eext*6, *321Qext*6, and G304Nfs*3) and 2 known HNRNPA1 mutations (P288A and D262V), previously connected to ALS and MSP, in a broad spectrum of patients with hereditary motor neuropathy, ALS, and myopathy. We establish that the mutations can have different effects on hnRNPA1 fibrillization, liquid-liquid phase separation, and SG dynamics. P288A accelerated fibrillization and decelerated SG disassembly, whereas *321Eext*6 had no effect on fibrillization but decelerated SG disassembly. By contrast, G304Nfs*3 decelerated fibrillization and impaired liquid phase separation. Our findings suggest different underlying pathomechanisms for HNRNPA1 mutations with a possible link to clinical phenotypes.


Assuntos
Esclerose Lateral Amiotrófica/genética , Ribonucleoproteína Nuclear Heterogênea A1/genética , Atrofia Muscular Espinal/genética , Adolescente , Adulto , Criança , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Grânulos de Estresse/metabolismo , Sequenciamento do Exoma , Adulto Jovem
11.
Nat Genet ; 53(3): 313-321, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33664507

RESUMO

Induced pluripotent stem cells (iPSCs) are an established cellular system to study the impact of genetic variants in derived cell types and developmental contexts. However, in their pluripotent state, the disease impact of genetic variants is less well known. Here, we integrate data from 1,367 human iPSC lines to comprehensively map common and rare regulatory variants in human pluripotent cells. Using this population-scale resource, we report hundreds of new colocalization events for human traits specific to iPSCs, and find increased power to identify rare regulatory variants compared with somatic tissues. Finally, we demonstrate how iPSCs enable the identification of causal genes for rare diseases.


Assuntos
Variação Genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Locos de Características Quantitativas , Síndrome de Bardet-Biedl/genética , Canais de Cálcio/genética , Linhagem Celular , Ataxia Cerebelar/genética , Metilação de DNA , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Doenças Raras/genética , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de RNA , Sequenciamento Completo do Genoma
12.
Genet Med ; 23(4): 661-668, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33420346

RESUMO

PURPOSE: To identify novel genes associated with intellectual disability (ID) in four unrelated families. METHODS: Here, through exome sequencing and international collaboration, we report eight individuals from four unrelated families of diverse geographic origin with biallelic loss-of-function variants in UBE4A. RESULTS: Eight evaluated individuals presented with syndromic intellectual disability and global developmental delay. Other clinical features included hypotonia, short stature, seizures, and behavior disorder. Characteristic features were appreciated in some individuals but not all; in some cases, features became more apparent with age. We demonstrated that UBE4A loss-of-function variants reduced RNA expression and protein levels in clinical samples. Mice generated to mimic patient-specific Ube4a loss-of-function variant exhibited muscular and neurological/behavioral abnormalities, some of which are suggestive of the clinical abnormalities seen in the affected individuals. CONCLUSION: These data indicate that biallelic loss-of-function variants in UBE4A cause a novel intellectual disability syndrome, suggesting that UBE4A enzyme activity is required for normal development and neurological function.


Assuntos
Nanismo , Deficiência Intelectual , Ubiquitina-Proteína Ligases/genética , Animais , Criança , Deficiências do Desenvolvimento/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Hipotonia Muscular , Fenótipo , Síndrome , Sequenciamento do Exoma
13.
Genet Med ; 23(2): 259-271, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33093671

RESUMO

PURPOSE: The NIH Undiagnosed Diseases Network (UDN) evaluates participants with disorders that have defied diagnosis, applying personalized clinical and genomic evaluations and innovative research. The clinical sites of the UDN are essential to advancing the UDN mission; this study assesses their contributions relative to standard clinical practices. METHODS: We analyzed retrospective data from four UDN clinical sites, from July 2015 to September 2019, for diagnoses, new disease gene discoveries and the underlying investigative methods. RESULTS: Of 791 evaluated individuals, 231 received 240 diagnoses and 17 new disease-gene associations were recognized. Straightforward diagnoses on UDN exome and genome sequencing occurred in 35% (84/240). We considered these tractable in standard clinical practice, although genome sequencing is not yet widely available clinically. The majority (156/240, 65%) required additional UDN-driven investigations, including 90 diagnoses that occurred after prior nondiagnostic exome sequencing and 45 diagnoses (19%) that were nongenetic. The UDN-driven investigations included complementary/supplementary phenotyping, innovative analyses of genomic variants, and collaborative science for functional assays and animal modeling. CONCLUSION: Investigations driven by the clinical sites identified diagnostic and research paradigms that surpass standard diagnostic processes. The new diagnoses, disease gene discoveries, and delineation of novel disorders represent a model for genomic medicine and science.


Assuntos
Doenças não Diagnosticadas , Animais , Genômica , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Estudos Retrospectivos , Sequenciamento do Exoma
14.
J Genet Couns ; 28(6): 1107-1118, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31478310

RESUMO

BACKGROUND: Despite growing evidence of diagnostic yield and clinical utility of whole exome sequencing (WES) in patients with undiagnosed diseases, there remain significant cost and reimbursement barriers limiting access to such testing. The diagnostic yield and resulting clinical actions of WES for patients who previously faced insurance coverage barriers have not yet been explored. METHODS: We performed a retrospective descriptive analysis of clinical WES outcomes for patients facing insurance coverage barriers prior to clinical WES and who subsequently enrolled in the Undiagnosed Diseases Network (UDN). Clinical WES was completed as a result of participation in the UDN. Payer type, molecular diagnostic yield, and resulting clinical actions were evaluated. RESULTS: Sixty-six patients in the UDN faced insurance coverage barriers to WES at the time of enrollment (67% public payer, 26% private payer). Forty-two of 66 (64%) received insurance denial for clinician-ordered WES, 19/66 (29%) had health insurance through a payer known not to cover WES, and 5/66 (8%) had previous payer denial of other genetic tests. Clinical WES results yielded a molecular diagnosis in 23 of 66 patients (35% [78% pediatric, 65% neurologic indication]). Molecular diagnosis resulted in clinical actions in 14 of 23 patients (61%). CONCLUSIONS: These data demonstrate that a substantial proportion of patients who encountered insurance coverage barriers to WES had a clinically actionable molecular diagnosis, supporting the notion that WES has value as a covered benefit for patients who remain undiagnosed despite objective clinical findings.


Assuntos
Sequenciamento do Exoma , Cobertura do Seguro , Doenças não Diagnosticadas/genética , Criança , Pré-Escolar , Feminino , Testes Genéticos/métodos , Humanos , Masculino , Estudos Retrospectivos , Estados Unidos
15.
Nat Med ; 25(6): 911-919, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160820

RESUMO

It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene1. The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches2-5. For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases6-8. This includes muscle biopsies from patients with undiagnosed rare muscle disorders6,9, and cultured fibroblasts from patients with mitochondrial disorders7. However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution.


Assuntos
Doenças Raras/genética , Ceramidase Ácida/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Variação Genética , Humanos , Masculino , Modelos Genéticos , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Canais de Potássio/genética , RNA/sangue , RNA/genética , Splicing de RNA/genética , Doenças Raras/sangue , Análise de Sequência de RNA , Sequenciamento do Exoma
16.
J Genet Couns ; 28(2): 213-228, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30964584

RESUMO

There are approximately 7,000 rare diseases affecting 25-30 million Americans, with 80% estimated to have a genetic basis. This presents a challenge for genetics practitioners to determine appropriate testing, make accurate diagnoses, and conduct up-to-date patient management. Exome sequencing (ES) is a comprehensive diagnostic approach, but only 25%-41% of the patients receive a molecular diagnosis. The remaining three-fifths to three-quarters of patients undergoing ES remain undiagnosed. The Stanford Center for Undiagnosed Diseases (CUD), a clinical site of the Undiagnosed Diseases Network, evaluates patients with undiagnosed and rare diseases using a combination of methods including ES. Frequently these patients have non-diagnostic ES results, but strategic follow-up techniques identify diagnoses in a subset. We present techniques used at the CUD that can be adopted by genetics providers in clinical follow-up of cases where ES is non-diagnostic. Solved case examples illustrate different types of non-diagnostic results and the additional techniques that led to a diagnosis. Frequent approaches include segregation analysis, data reanalysis, genome sequencing, additional variant identification, careful phenotype-disease correlation, confirmatory testing, and case matching. We also discuss prioritization of cases for additional analyses.


Assuntos
Sequenciamento do Exoma , Doenças Raras/diagnóstico , Doenças não Diagnosticadas/genética , Exoma , Feminino , Seguimentos , Humanos , Masculino , Fenótipo , Doenças Raras/genética , Análise de Sequência de DNA
17.
J Genet Couns ; 28(2): 466-476, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30706981

RESUMO

With the wide adoption of next-generation sequencing (NGS)-based genetic tests, genetic counselors require increased familiarity with NGS technology, variant interpretation concepts, and variant assessment tools. The use of exome and genome sequencing in clinical care has expanded the reach and diversity of genetic testing. Regardless of the setting where genetic counselors are performing variant interpretation or reporting, most of them have learned these skills from colleagues, while on the job. Though traditional, lecture-based learning around these topics is important, there has been growing need for the inclusion of case-based, experiential training of genomics and variant interpretation for genetic counseling students, with the goal of creating a strong foundation in variant interpretation for new genetic counselors, regardless of what area of practice they enter. To address this need, we established a genomics and variant interpretation rotation for Stanford's genetic counseling training program. In response to changes in the genomics landscape, this has now evolved into three unique rotation experiences, each focused on variant interpretation in the context of various genomic settings, including clinical laboratory, research laboratory, and healthy genomic analysis studies. Here, we describe the goals and learning objectives that we have developed for these variant interpretation rotations, and illustrate how these concepts are applied in practice.


Assuntos
Conselheiros/educação , Currículo , Aconselhamento Genético , Testes Genéticos , Genômica/educação , Adulto , Humanos , Desenvolvimento de Programas , Universidades
18.
Cancer ; 123(13): 2497-2505, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28182268

RESUMO

BACKGROUND: Breast cancer (BC) disparities may widen with genomic advances. The authors compared non-Hispanic white (NHW), black, and Hispanic BC survivors for 1) cancer risk-management practices among BRCA carriers and 2) provider discussion and receipt of genetic testing. METHODS: A population-based sample of NHW, black, and Hispanic women who had been diagnosed with invasive BC at age 50 years or younger from 2009 to 2012 were recruited through the state cancer registry. Multiple logistic regression was used to compare cancer risk-management practices in BRCA carriers and associations of demographic and clinical variables with provider discussion and receipt of testing. RESULTS: Of 1622 participants, 159 of 440 (36.1%) black women, 579 of 897 (64.5%) NHW women, 58 of 117 (49.6%) Spanish-speaking Hispanic women, and 116 of 168 (69%) English-speaking Hispanic women underwent BRCA testing, of whom 90 had a pathogenic BRCA mutation identified. Among BRCA carriers, the rates of risk-reducing mastectomy and risk-reducing salpingo-oophorectomy were significantly lower among black women compared with Hispanic and NHW women after controlling for clinical and demographic variables (P = .025 and P = .008, respectively). Compared with NHW women, discussion of genetic testing with a provider was 16 times less likely among black women (P < .0001) and nearly 2 times less likely among Spanish-speaking Hispanic women (P = .04) after controlling for clinical and sociodemographic factors. CONCLUSIONS: The current results suggest that the rates of risk-reducing salpingo-oophorectomy are lower among black BRCA carriers compared with their Hispanic and NHW counterparts, which is concerning because benefits from genetic testing arise from cancer risk-management practice options. Furthermore, lower BRCA testing rates among blacks may partially be because of a lower likelihood of provider discussion. Future studies are needed to improve cancer risk identification and management practices across all populations to prevent the widening of disparities. Cancer 2017;123:2497-05. © 2017 American Cancer Society.


Assuntos
Etnicidade/estatística & dados numéricos , Testes Genéticos/estatística & dados numéricos , Disparidades em Assistência à Saúde/etnologia , Síndrome Hereditária de Câncer de Mama e Ovário/diagnóstico , Neoplasias Ovarianas/prevenção & controle , Ovariectomia/estatística & dados numéricos , Mastectomia Profilática/estatística & dados numéricos , Salpingectomia/estatística & dados numéricos , Sobreviventes , Adulto , Negro ou Afro-Americano/estatística & dados numéricos , Neoplasias da Mama/genética , Neoplasias da Mama/prevenção & controle , Feminino , Genes BRCA1 , Genes BRCA2 , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Síndrome Hereditária de Câncer de Mama e Ovário/terapia , Heterozigoto , Hispânico ou Latino/estatística & dados numéricos , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Análise Multivariada , Neoplasias Ovarianas/genética , Procedimentos Cirúrgicos Profiláticos/estatística & dados numéricos , Medição de Risco , População Branca/estatística & dados numéricos
19.
Breast J ; 22(2): 166-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26661631

RESUMO

Given that Black women remain underrepresented in clinical research studies, we sought to recruit a population-based sample of young Black women with breast cancer through a state cancer registry. Demographic and clinical information on all Black women diagnosed with invasive breast cancer at or below age 50 between 2009 and 2012 in Florida was obtained through the state cancer registry. Survivors were invited to participate in the study through state-mandated recruitment methods. Participant demographic and clinical characteristics were compared using Chi-squared tests for categorical variables and the two sample t-test for continuous variables to identify differences between: (i) consented participants versus all other eligible; and (ii) living versus deceased. Of the 1,647 young Black women with breast cancer, mean age at diagnosis was 42.5, with the majority having localized or regional disease, unmarried, privately insured, and employed. There were no significant differences in demographic and clinical variables between the 456 consented study participants versus the remaining 1,191 presumed eligible individuals. Compared to potential participants, women determined to be deceased prior to recruitment (n = 182) were significantly more likely to have distant disease and a triple-negative phenotype. They were also significantly more likely to be unemployed, and uninsured or have public insurance (i.e., Medicaid or Medicare). Our results demonstrate that recruitment of a population-based sample of breast cancer survivors through a state cancer registry is a feasible strategy in this underserved and underrepresented population. However, survival bias, which was observed due to the lag time between diagnosis and recruitment, is important to adjust for when generalizing findings to all young Black breast cancer patients.


Assuntos
Negro ou Afro-Americano , Neoplasias da Mama/etiologia , Sistema de Registros , Adulto , Neoplasias da Mama/epidemiologia , Feminino , Florida/epidemiologia , Humanos , Medicaid , Pessoas sem Cobertura de Seguro de Saúde , Medicare , Pessoa de Meia-Idade , Estados Unidos
20.
Cancer ; 121(23): 4173-80, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26287763

RESUMO

BACKGROUND: Black women are disproportionately affected with triple-negative breast cancer and have relatively poor survival. To the authors' knowledge, it is not known to what extent differences in the clinical presentation of breast cancer between non-Hispanic white women and black women can be accounted for by the presence of mutations in the BRCA1 and BRCA2 genes. The authors sought to evaluate the frequency of BRCA pathogenic variants in a population-based sample of young black women with breast cancer. METHODS: Black women diagnosed with invasive breast cancer at age ≤50 years from 2009 to 2012 were recruited to the study through the Florida Cancer Registry. Participants underwent genetic counseling, completed a study questionnaire, and consented to release of their medical records. Saliva specimens were collected for BRCA sequencing and large rearrangement testing through multiplex ligation-dependent probe amplification. RESULTS: A DNA sample was evaluated for 396 women, 49 of whom (12.4%) had a mutation in BRCA1 or BRCA2. Eight recurrent mutations accounted for 49% of all pathogenic variants. CONCLUSIONS: To the authors' knowledge, the prevalence of BRCA mutations among the Florida-based sample of young black women with breast cancer in the current study exceeds that previously reported for non-Hispanic white women. It is appropriate to recommend BRCA testing in all young black women with invasive breast cancer.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Negro ou Afro-Americano/genética , Neoplasias da Mama/genética , Mutação , Adulto , Neoplasias da Mama/etnologia , Neoplasias da Mama/patologia , Detecção Precoce de Câncer , Feminino , Florida , Aconselhamento Genético , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica , Sistema de Registros , Análise de Sequência de DNA/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...