Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(38): 19046-19054, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31484764

RESUMO

Naturalists have been fascinated for centuries by animal colors and color patterns. While widely studied at the adult stage, we know little about color patterns in the embryo. Here, we study a trait consisting of coloration that is specific to the embryo and absent from postembryonic stages in water striders (Gerromorpha). By combining developmental genetics with chemical and phylogenetic analyses across a broad sample of species, we uncovered the mechanisms underlying the emergence and diversification of embryonic colors in this group of insects. We show that the pteridine biosynthesis pathway, which ancestrally produces red pigment in the eyes, has been recruited during embryogenesis in various extraocular tissues including antennae and legs. In addition, we discovered that this cooption is common to all water striders and initially resulted in the production of yellow extraocular color. Subsequently, 6 lineages evolved bright red color and 2 lineages lost the color independently. Despite the high diversity in colors and color patterns, we show that the underlying biosynthesis pathway remained stable throughout the 200 million years of Gerromorpha evolutionary time. Finally, we identified erythropterin and xanthopterin as the pigments responsible for these colors in the embryo of various species. These findings demonstrate how traits can emerge through the activation of a biosynthesis pathway in new developmental contexts.


Assuntos
Cor , Embrião não Mamífero/metabolismo , Heterópteros/fisiologia , Pigmentação/fisiologia , Pigmentos Biológicos/metabolismo , Pteridinas/metabolismo , Transdução de Sinais , Animais , Evolução Biológica , Embrião não Mamífero/citologia , Olho/citologia , Olho/metabolismo , Heterópteros/classificação , Fenótipo , Filogenia
2.
BMC Genomics ; 19(1): 832, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463532

RESUMO

BACKGROUND: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group. RESULTS: Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats. CONCLUSIONS: Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders.


Assuntos
Genoma , Heterópteros/genética , Heterópteros/fisiologia , Proteínas de Insetos/genética , Adaptação Fisiológica , Animais , Evolução Molecular , Genômica , Heterópteros/classificação , Fenótipo , Filogenia
3.
Sci Adv ; 3(3): e1601778, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28435861

RESUMO

The origin of ancient ligand/receptor couples is often analyzed via reconstruction of ancient receptors and, when ligands are products of metabolic pathways, they are not supposed to evolve. However, because metabolic pathways are inherited by descent with modification, their structure can be compared using cladistic analysis. Using this approach, we studied the evolution of steroid hormones. We show that side-chain cleavage is common to most vertebrate steroids, whereas aromatization was co-opted for estrogen synthesis from a more ancient pathway. The ancestral products of aromatic activity were aromatized steroids with a side chain, which we named "paraestrols." We synthesized paraestrol A and show that it effectively binds and activates the ancestral steroid receptor. Our study opens the way to comparative studies of biologically active small molecules.


Assuntos
Estrogênios/genética , Evolução Molecular , Modelos Genéticos , Receptores de Estrogênio/genética , Animais
4.
PLoS One ; 11(2): e0149497, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26900852

RESUMO

The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Organogênese/efeitos dos fármacos , Ácido Valproico/farmacologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Metabolismo dos Lipídeos/efeitos dos fármacos , Peixe-Zebra/metabolismo
5.
Mol Cell Endocrinol ; 401: 221-37, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25449417

RESUMO

Nuclear receptors (NRs) are major pharmacological targets that allow an access to the mechanisms controlling gene regulation. As such, some NRs were identified as biological targets of active compounds contained in herbal remedies found in traditional medicines. We aim here to review this expanding literature by focusing on the informative articles regarding the mechanisms of action of traditional Chinese medicines (TCMs). We exemplified well-characterized TCM action mediated by NR such as steroid receptors (ER, GR, AR), metabolic receptors (PPAR, LXR, FXR, PXR, CAR) and RXR. We also provided, when possible, examples from other traditional medicines. From these, we draw a parallel between TCMs and phytoestrogens or endocrine disrupting chemicals also acting via NR. We define common principle of action and highlight the potential and limits of those compounds. TCMs, by finely tuning physiological reactions in positive and negative manners, could act, in a subtle but efficient way, on NR sensors and their transcriptional network.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fitoestrógenos/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Medicina Tradicional Chinesa , Receptores de Esteroides/metabolismo
6.
Annu Rev Entomol ; 58: 251-71, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23072463

RESUMO

In 1974, Ashburner and colleagues postulated a model to explain the control of the puffing sequence on Drosophila polytene chromosomes initiated by the molting hormone 20-hydroxyecdysone. This model inspired a generation of molecular biologists to clone and characterize elements of the model, thereby providing insights into the control of gene networks by steroids, diatomic gases, and other small molecules. It led to the first cloning of the EcR subunit of the heterodimeric EcR-USP ecdysone receptor. X-ray diffraction studies of the ligand-binding domain of the receptor are elucidating the specificity of receptor-ecdysteroid interactions, the selectivity of some environmentally friendly insecticides, the evolution of the EcR-USP heterodimer, and indeed Ashburner's classical biochemical evidence for the central role of the ecdysone receptor in his model.


Assuntos
Ecdisterona/metabolismo , Regulação da Expressão Gênica , Insetos/metabolismo , Receptores de Esteroides/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos/genética , Receptores de Esteroides/genética
7.
BMC Evol Biol ; 12: 199, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23039844

RESUMO

BACKGROUND: The maintenance of biological systems requires plasticity and robustness. The function of the ecdysone receptor, a heterodimer composed of the nuclear receptors ECR (NR1H1) and USP (NR2B4), was maintained in insects despite a dramatic divergence that occurred during the emergence of Mecopterida. This receptor is therefore a good model to study the evolution of plasticity. We tested the hypothesis that selection has shaped the Ligand-Binding Domain (LBD) of USP during evolution of Mecopterida. RESULTS: We isolated usp and cox1 in several species of Drosophilidae, Tenebrionidae and Blattaria and estimated non-synonymous/synonymous rate ratios using maximum-likelihood methods and codon-based substitution models. Although the usp sequences were mainly under negative selection, we detected relaxation at residues located on the surface of the LBD within Mecopterida families. Using branch-site models, we also detected changes in selective constraints along three successive branches of the Mecopterida evolution. Residues located at the bottom of the ligand-binding pocket (LBP) underwent strong positive selection during the emergence of Mecopterida. This change is correlated with the acquisition of a large LBP filled by phospholipids that probably allowed the stabilisation of the new Mecopterida structure. Later, when the two subgroups of Mecopterida (Amphiesmenoptera: Lepidoptera, Trichoptera; Antliophora: Diptera, Mecoptera, Siphonaptera) diverged, the same positions became under purifying selection. Similarly, several positions of the heterodimerisation interface experienced positive selection during the emergence of Mecopterida, rapidly followed by a phase of constrained evolution. An enlargement of the heterodimerisation surface is specific for Mecopterida and was associated with a reinforcement of the obligatory partnership between ECR and USP, at the expense of homodimerisation. CONCLUSIONS: In order to explain the episodic mode of evolution of USP, we propose a model in which the molecular adaptation of this protein is seen as a process of resilience for the maintenance of the ecdysone receptor functionality.


Assuntos
Baratas/genética , Besouros/genética , Drosophilidae/genética , Evolução Molecular , Receptores de Esteroides/genética , Animais , Modelos Moleculares , Filogenia , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Esteroides/química
8.
Med Sci (Paris) ; 26(3): 297-303, 2010 Mar.
Artigo em Francês | MEDLINE | ID: mdl-20346280

RESUMO

With its recently sequenced genome, the red flour beetle Tribolium castaneum became one of the few model organisms with all the main genetic tools. As a coleoptera, it belongs to the most species-rich order of animals. Tribolium is also a worldwide pest for stored dried foods. Regarding developmental biology, Tribolium offers a complementary model to the highly derived Drosophila. For example, the function of many gap and pair-rule segmentation genes is different in both species. These differences reveal the evolutionary plasticity between two modes of development, with a long germ band in fly and a short one in Tribolium. This beetle allowed the identification of a new type of ecdysone receptor for holometabolous insects. Finally, in the search for the juvenile hormone receptor, a crucial result was obtained with experiments that could be performed only with Tribolium, and not with Drosophila. Tribolium, in association with Drosophila, should help to understand the general rules of development in insects.


Assuntos
Drosophila/genética , Tribolium/genética , Animais , Tamanho Corporal/genética , Sequência Conservada , Drosophila/classificação , Drosophila/crescimento & desenvolvimento , Feminino , Genoma de Inseto , Filogenia , Tribolium/classificação , Tribolium/crescimento & desenvolvimento
9.
Mol Biol Evol ; 26(4): 753-68, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19126866

RESUMO

Understanding how the variability of protein structure arises during evolution and leads to new structure-function relationships ultimately promoting evolutionary novelties is a major goal of molecular evolution and is critical for interpreting genome sequences. We addressed this issue using the ecdysone receptor (ECR), a major developmental factor that controls development and reproduction of arthropods. The functional ECR is a heterodimer of two nuclear receptors: ECR, which binds ecdysteroids, and its obligatory partner ultraspirade (USP), which is orthologous to the retinoid X receptor of vertebrates. Both genes underwent a dramatic increase of evolutionary rate in Mecopterida, the major insect terminal group containing Dipteras and Lepidopteras. We therefore questioned the implication of this event in terms of coevolution of their dimerization interface. A structural comparison revealed a 30% larger ligand-binding domain (LBD) heterodimerization surface in the Lepidoptera Heliothis when compared with basal insects, associated with a symmetrization of the interface, which is exceptional for nuclear receptors. Reconstruction of ancestral sequences and homology modeling of the ancestral Mecopterida ECR-USP reveal that this enlarged dimerization surface is a synapomorphy for Mecopterida. Furthermore, we show that the residues implicated in the new dimerization surface underwent specific evolutionary constraints in Mecopterida indicative of their new and conserved role in the dimerization interface. Most of all, the novel surface originates from a 15 degrees torsion of a subdomain of USP LBD toward its partner ECR, which is a long-range consequence of the peculiar position of a Mecopterida-specific insertion in loop L1-3, located outside of the interaction surface, in a less crucial domain of the partner protein. These results indicate that the coevolution between ECR and USP occurred through a novel mechanism of intramolecular epistasis that will undoubtedly be generalized for other molecules because it uses flexibility of a less-constrained region of a protein to modify the structure of another, critical part of the molecule.


Assuntos
Proteínas de Insetos/genética , Receptores de Esteroides/genética , Animais , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Insetos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Receptores de Esteroides/química , Receptores de Esteroides/metabolismo , Homologia Estrutural de Proteína
11.
Insect Biochem Mol Biol ; 38(4): 416-29, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18342247

RESUMO

The Tribolium genome contains 21 nuclear receptors, representing all of the six known subfamilies. This first complete set for a coleopteran species reveals a strong conservation of the number and identity of nuclear receptors in holometabolous insects. Two novelties are observed: the atypical NR0 gene knirps is present only in brachyceran flies, while the NR2E6 gene is found only in Tribolium and in Apis. Using a quantitative analysis of the evolutionary rate, we discovered that nuclear receptors could be divided into two groups. In one group of 13 proteins, the rates follow the trend of the Mecopterida genome-wide acceleration. In a second group of five nuclear receptors, all acting early during the ecdysone cascade, we observed an even higher increase of the evolutionary rate during the early divergence of Mecopterida. We thus extended our analysis to the 12 classic ecdysone transcriptional regulators and found that six of them (ECR, USP, HR3, E75, HR4 and Kr-h1) underwent an increase in evolutionary rate at the base of the Mecopterida lineage. By contrast, E74, E93, BR, HR39, FTZ-F1 and E78 do not show this divergence. We suggest that coevolution occurred within a network of regulators that control the ecdysone cascade. The advent of Tribolium as a powerful model should allow a better understanding of this evolutionary event.


Assuntos
Ecdisona/metabolismo , Evolução Molecular , Receptores Citoplasmáticos e Nucleares/genética , Tribolium/genética , Animais , Genoma de Inseto , Filogenia , Tribolium/crescimento & desenvolvimento , Tribolium/metabolismo
12.
EMBO J ; 26(16): 3770-82, 2007 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-17673910

RESUMO

Retinoid X receptor (RXR) and Ultraspiracle (USP) play a central role as ubiquitous heterodimerization partners of many nuclear receptors. While it has long been accepted that a wide range of ligands can activate vertebrate/mollusc RXRs, the existence and necessity of specific endogenous ligands activating RXR-USP in vivo is still matter of intense debate. Here we report the existence of a novel type of RXR-USP with a ligand-independent functional conformation. Our studies involved Tribolium USP (TcUSP) as representative of most arthropod RXR-USPs, with high sequence homology to vertebrate/mollusc RXRs. The crystal structure of the ligand-binding domain of TcUSP was solved in the context of the functional heterodimer with the ecdysone receptor (EcR). While EcR exhibits a canonical ligand-bound conformation, USP adopts an original apo structure. Our functional data demonstrate that TcUSP is a constitutively silent partner of EcR, and that none of the RXR ligands can bind and activate TcUSP. These findings together with a phylogenetic analysis suggest that RXR-USPs have undergone remarkable functional shifts during evolution and give insight into receptor-ligand binding evolution and dynamics.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Estrutura Quaternária de Proteína , Receptor X Retinoide alfa/química , Receptor X Retinoide alfa/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Dimerização , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Evolução Molecular , Genes Reporter , Humanos , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Receptor X Retinoide alfa/classificação , Receptor X Retinoide alfa/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Tribolium
13.
Med Sci (Paris) ; 19(12): 1265-70, 2003 Dec.
Artigo em Francês | MEDLINE | ID: mdl-14691752

RESUMO

Evolutionary developmental genetics (evo-devo) reveals that the plasticity of development is so important that every developmental biology project should carefully take this point into consideration. The example of bicoid, the first discovered morphogen, illustrates how an essential gene can change its function during evolution. The search for bicoid homologues showed that this gene is surprisingly specific to flies (cyclorraphan diptera) and absent in other insects. In fact, recent studies demonstrate that bicoid is a very derived Hox3 homeotic gene. During insect evolution, the ancestral Hox3 gene lost its homeotic function and acquired new roles in oocytes and embryonic annexes. Then, in the lineage leading to modern flies, a duplication of this new gene, followed by functional divergence, led to the formation of bicoid and zerknüllt. Both genes are located within the Drosophila Hox complex; however, they have no homeotic function. Thanks to the power of Drosophila genetics, it is possible to suggest that torso and hunchback may constitute the insect primitive anterior organizer. The bicoid evolutionary history reveals several fundamental mechanisms of the evolution of developmental genes, such as changes of gene regulation, modifications of protein sequences and gene duplication. It also shows the need for studying a wider range of model organisms before generalisations can be made from data obtained with one particular species.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/farmacologia , Transativadores/genética , Transativadores/farmacologia , Animais , Proteínas de Ligação a DNA , Proteínas de Drosophila , Evolução Molecular , Proteínas de Ligação a RNA , Proteínas Repressoras
14.
Mol Biol Evol ; 20(4): 541-53, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12654933

RESUMO

Ecdysteroid hormones are major regulators in reproduction and development of insects, including larval molts and metamorphosis. The functional ecdysone receptor is a heterodimer of ECR (NR1H1) and USP-RXR (NR2B4), which is the orthologue of vertebrate retinoid X receptors (RXR alpha, beta, gamma). Both proteins belong to the superfamily of nuclear hormone receptors, ligand-dependent transcription factors that share two conserved domains: the DNA-binding domain (DBD) and the ligand-binding domain (LBD). In order to gain further insight into the evolution of metamorphosis and gene regulation by ecdysone in arthropods, we performed a phylogenetic analysis of both partners of the heterodimer ECR/USP-RXR. Overall, 38 USP-RXR and 19 ECR protein sequences, from 33 species, have been used for this analysis. Interestingly, sequence alignments and structural comparisons reveal high divergence rates, for both ECR and USP-RXR, specifically among Diptera and Lepidoptera. The most impressive differences affect the ligand-binding domain of USP-RXR. In addition, ECR sequences show variability in other domains, namely the DNA-binding and the carboxy-terminal F domains. Our data provide the first evidence that ECR and USP-RXR may have coevolved during holometabolous insect diversification, leading to a functional divergence of the ecdysone receptor. These results have general implications on fundamental aspects of insect development, evolution of nuclear receptors, and the design of specific insecticides.


Assuntos
Evolução Biológica , Dípteros/genética , Variação Genética , Lepidópteros/genética , Receptores do Ácido Retinoico/genética , Receptores de Esteroides/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Ligantes , Dados de Sequência Molecular , Filogenia , Receptores do Ácido Retinoico/metabolismo , Receptores de Esteroides/metabolismo , Receptores X de Retinoides , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...