Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci (Paris) ; 39(10): 738-743, 2023 Oct.
Artigo em Francês | MEDLINE | ID: mdl-37943134

RESUMO

Because of their interest in medicine, most studies of anaesthesia focus on the nervous system of metazoans, and the fact that any life form can be anaesthetised is often underlooked. If electrical signalling is an essential phenomenon for the success of animals, it appears to be widespread beyond metazoans. Indeed, anaesthesia targets Na+/Ca2+ voltage-gated channels that exist in a wide variety of species and originate from ancestral channels that predate eukaryotes in the course of evolution. The fact that the anaesthetic capacity that leads to loss of sensitivity is common to all phyla may lead to two hypotheses: to be investigated is the evolutionary maintenance of the ability to be anaesthetised due to an adaptive advantage or to a simple intrinsic defect in ion channels? The study of anaesthesia in organisms phylogenetically distant from animals opens up promising prospects for the discovery of new anaesthetic treatments. Moreover, it should also lead to a better understanding of a still poorly understood phenomenon that yet unifies all living organisms. We hope that this new understanding of the unity of life will help humans to assume their responsibilities towards all species, at a time when we are threatening biodiversity with mass extinction.


Title: L'anesthésie, un processus commun à tout le vivant. Abstract: Du fait de leur intérêt en médecine, la majeure partie des études actuelles sur les anesthésiques se concentrent sur le système nerveux des animaux et négligent le fait que toute forme de vie peut être anesthésiée. En effet, l'anesthésie cible des canaux dépendants du voltage, canaux qui existent dans un grand nombre d'espèces diverses et qui proviennent de canaux ancestraux antérieurs à l'apparition même des eucaryotes. La question demeure : le maintien au cours de l'évolution de la capacité à être anesthésié est-il dû à un avantage adaptatif ou à un simple défaut intrinsèque des canaux ioniques ? Le regain d'intérêt actuel pour les modèles non animaux ouvre l'espoir non seulement de découvrir de nouvelles molécules anesthésiantes, mais aussi de progresser dans notre connaissance fondamentale de ce phénomène encore mal compris.


Assuntos
Anestesia , Anestésicos , Medicina , Humanos , Animais , Biodiversidade , Extinção Biológica
2.
Plant Signal Behav ; 16(12): 2004769, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34913409

RESUMO

Before the upheaval brought about by phylogenetic classification, classical taxonomy separated living beings into two distinct kingdoms, animals and plants. Rooted in 'naturalist' cosmology, Western science has built its theoretical apparatus on this dichotomy mostly based on ancient Aristotelian ideas. Nowadays, despite the adoption of the Darwinian paradigm that unifies living organisms as a kinship, the concept of the "scale of beings" continues to structure our analysis and understanding of living species. Our aim is to combine developments in phylogeny, recent advances in biology, and renewed interest in plant agency to craft an interdisciplinary stance on the living realm. The lines at the origin of plant or animal have a common evolutionary history dating back to about 3.9 Ga, separating only 1.6 Ga ago. From a phylogenetic perspective of living species history, plants and animals belong to sister groups. With recent data related to the field of Plant Neurobiology, our aim is to discuss some socio-cultural obstacles, mainly in Western naturalist epistemology, that have prevented the integration of living organisms as relatives, while suggesting a few avenues inspired by practices principally from other ontologies that could help overcome these obstacles and build bridges between different ways of connecting to life.


Assuntos
Botânica , Animais , Evolução Biológica , Cegueira , Filogenia , Plantas/genética
3.
Microorganisms ; 9(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34576695

RESUMO

Large-scale manufacturing of rAAV is a bottleneck for the development of genetic disease treatments. The baculovirus/Sf9 cell system underpins the first rAAV treatment approved by EMA and remains one of the most advanced platforms for rAAV manufacturing. Despite early successes, rAAV is still a complex biomaterial to produce. Efficient production of the recombinant viral vector requires that AAV replicase and capsid genes be co-located with the recombinant AAV genome. Here, we present the Monobac system, a singular, modified baculovirus genome that contains all of these functions. To assess the relative yields between the dual baculovirus and Monobac systems, we prepared each system with a transgene encoding γSGC and evaluated vectors' potency in vivo. Our results show that rAAV production using the Monobac system not only yields higher titers of rAAV vector but also a lower amount of DNA contamination from baculovirus.

4.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202415

RESUMO

The authors would like to remove the scientific consortium 'Camille Nous' from the author list and the Author Contributions section in the published paper [...].

5.
Plant Sci ; 305: 110844, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33691971

RESUMO

Hyperosmotic stresses represent some of the most serious abiotic factors that adversely affect plants growth, development and fitness. Despite their central role, the early cellular events that lead to plant adaptive responses remain largely unknown. In this study, using Arabidopsis thaliana cultured cells we analyzed early cellular responses to sorbitol-induced hyperosmotic stress. We observed biphasic and dual responses of A. thaliana cultured cells to sorbitol-induced hyperosmotic stress. A first set of events, namely singlet oxygen (1O2) production and cell hyperpolarization due to a decrease in anion channel activity could participate to signaling and osmotic adjustment allowing cell adaptation and survival. A second set of events, namely superoxide anion (O2-) production by RBOHD-NADPH-oxidases and SLAC1 anion channel activation could participate in programmed cell death (PCD) of a part of the cell population. This set of events raises the question of how a survival pathway and a death pathway could be induced by the same hyperosmotic condition and what could be the meaning of the induction of two different behaviors in response to hyperosmotic stress.


Assuntos
Apoptose/efeitos dos fármacos , Arabidopsis/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Osmorregulação/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Sorbitol/metabolismo
6.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560138

RESUMO

Calcite processed particles (CaPPs, Megagreen®) elaborated from sedimentary limestone rock, and finned by tribomecanic process were found to increase photosynthetic CO2 fixation grapevines and stimulate growth of various cultured plants. Due to their processing, the CaPPs present a jagged shape with some invaginations below the micrometer size. We hypothesised that CaPPs could have a nanoparticle (NP)-like effects on plants. Our data show that CaPPs spontaneously induced reactive oxygen species (ROS) in liquid medium. These ROS could in turn induce well-known cellular events such as increase in cytosolic Ca2+, biotic ROS generation and activation of anion channels indicating that these CaPPs could activate various signalling pathways in a NP-like manner.


Assuntos
Carbonato de Cálcio/farmacologia , Sedimentos Geológicos/química , Nicotiana/citologia , Cálcio/metabolismo , Células Cultivadas , Nanopartículas , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
7.
Plant Sci ; 280: 408-415, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30824019

RESUMO

Using various inhibitors and scavengers we took advantage of the size of sunflower (Helianthus annuus) seeds to investigate in vivo the effects of hormones, namely abscisic acid (ABA) and ethylene (ET), and reactive oxygen species (ROS) on the polarization of dormant (D) and non-dormant (ND) embryonic seed cells using microelectrodes. Our data show that D and ND seed cells present different polarization likely due to the regulation of plasma membrane (PM) H+-ATPase activity. The data obtained after addition of hormones or ROS scavengers further suggest that ABA dependent inhibition of PM H+-ATPases could participate in dormancy maintenance and that ET-and ROS-dependent PM H+-ATPase stimulation could participate in dormancy release in sunflower seeds.


Assuntos
Helianthus/enzimologia , Dormência de Plantas , Reguladores de Crescimento de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Abscísico/metabolismo , Membrana Celular/enzimologia , Etilenos/metabolismo , Germinação , Helianthus/genética , Helianthus/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/genética , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia
8.
PLoS One ; 13(11): e0207414, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30440025

RESUMO

The ability to produce large quantities of recombinant Adeno-Associated Virus (rAAV) vectors is an important factor for the development of gene therapy-based medicine. The baculovirus/insect cell expression system is one of the major systems for large scale rAAV production. So far, most technological developments concerned the optimization of the AAV rep and cap genes in order to be expressed correctly in a heterologous system. However, the effect of the baculovirus infection on the production of rAAV has not been examined in detail. In this study we show that the baculoviral cathepsin (v-CATH) protease is active on several (but not all) rAAV serotypes, leading to a partial degradation of VP1/VP2 proteins. Subsequently, we identified the principal v-CATH cleavage site in the rAAV8 capsid proteins and demonstrated that the cleavage is highly specific. The proteolytic degradation of VP1/VP2 AAV capsid proteins reduces the infectivity of rAAV vectors but can be prevented by the use of a baculovirus vector with a deletion of the chiA/v-cath locus or by addition of the E64 protease inhibitor during production. Moreover, the codon optimization of AAV cap performed for several serotypes and originally aimed at the removal of potential alternative initiation codons, resulted in incorporation of additional forms of truncated VP1 into the rAAV capsids.


Assuntos
Proteínas do Capsídeo/genética , Cisteína Endopeptidases/genética , Dependovirus/genética , Vetores Genéticos/genética , Baculoviridae/enzimologia , Baculoviridae/genética , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Terapia Genética , Humanos
9.
Plant Sci ; 272: 173-178, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29807589

RESUMO

We recently identified two behaviours in cultured cells of the salt accumulating halophyte Cakile maritima: one related to a sustained depolarization due to Na+ influx through the non-selective cation channels leading to programmed cell death of these cells, a second one related to a transient depolarization allowing cells to survive (Ben Hamed-Laouti, 2016). In this study, we considered at the cellular level mechanisms that could participate to the exclusion of Na+ out of the cell and thus participate in the regulation of the internal contents of Na+ and cell survival. Upon addition of NaCl in the culture medium of suspension cells of C. maritima, we observed a rapid influx of Na+ followed by an efflux dependent of the activity of plasma membrane H+-ATPases, in accordance with the functioning of a Na+/H+ antiporter and the ability of some cells to repolarize. The Na+ efflux was shown to be dependent on Na+-dependent on Ca2+ influx like the SOS1 Na+/H+ antiporter. We further could observe in response to salt addition, an early production of singlet oxygen (1O2) probably due to peroxidase activities. This early 1O2 production seemed to be a prerequisite to the Na+ efflux. Our findings suggest that in addition to the pathway leading to PCD (Ben Hamed-Laouti, 2016), a second pathway comprising an SOS-like system could participate to the survival of a part of the C. maritima cultured cells challenged by salt stress.


Assuntos
Brassicaceae/metabolismo , Plantas Tolerantes a Sal/metabolismo , Brassicaceae/citologia , Brassicaceae/fisiologia , Células Cultivadas , Potenciais da Membrana , Redes e Vias Metabólicas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/citologia , Plantas Tolerantes a Sal/fisiologia , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Superóxidos/metabolismo
10.
Ann Bot ; 122(5): 849-860, 2018 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29579139

RESUMO

Background and Aims: Methanol is a volatile organic compound released from plants through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. However, molecular mechanisms that explain how methanol could affect plant defences remain poorly understood. Methods: Using cultured cells and seedlings from Arabidopsis thaliana and tobacco BY2 expressing the apoaequorin gene, allowing quantification of cytosolic Ca2+, a reactive oxygen species (ROS) probe (CLA, Cypridina luciferin analogue) and electrophysiological techniques, we followed early plant cell responses to exogenously supplied methanol applied as a liquid or as volatile. Key Results: Methanol induces cytosolic Ca2+ variations that involve Ca2+ influx through the plasma membrane and Ca2+ release from internal stores. Our data further suggest that these Ca2+ variations could interact with different ROS and support a signalling pathway leading to well known plant responses to pathogens such as plasma membrane depolarization through anion channel regulation and ethylene synthesis. Conclusions: Methanol is not only a by-product of PME activities, and our data suggest that [Ca2+]cyt variations could participate in signalling processes induced by methanol upstream of plant defence responses.


Assuntos
Arabidopsis/fisiologia , Cálcio/metabolismo , Etilenos/metabolismo , Nicotiana/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Equorina/metabolismo , Apoproteínas/metabolismo , Arabidopsis/efeitos dos fármacos , Membrana Celular/fisiologia , Células Cultivadas , Citosol/metabolismo , Metanol/administração & dosagem , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Plântula/efeitos dos fármacos , Plântula/fisiologia , Nicotiana/efeitos dos fármacos
11.
Hum Gene Ther Methods ; 28(5): 277-289, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28967288

RESUMO

Adeno-associated virus (AAV) inverted terminal repeats (ITRs) are key elements of AAV. These guanine-cytosine-rich structures are involved in the replication and encapsidation of the AAV genome, along with its integration in and excision from the host genome. These sequences are the only AAV-derived DNA sequences conserved in recombinant AAV (rAAV), as they allow its replication, encapsidation, and long-term maintenance and expression in target cells. Due to the original vector design, plasmids containing the gene of interest flanked by ITRs and used for rAAV production often present incomplete, truncated, or imperfect ITR sequences. For example, pSUB201 and its derivatives harbor a truncated (14 nt missing on the external part of the ITR), flop-orientated ITR plus 46 bp of non-ITR viral DNA at each end of the rAAV genome. It has been shown that rAAV genomes can be replicated, even with incomplete, truncated, or imperfect ITR sequences, leading to the production of rAAV vectors in transfection experiments. Nonetheless, it was hypothesized that unmodified wild-type (WT) ITR sequences could lead to a higher yield of rAAV, with less non-rAAV encapsidated DNA originating from the production cells and/or baculovirus shuttle vector genomes. This work studied the impact of imperfect ITRs on the level of encapsidated rAAV genomes and baculovirus-derived DNA sequences using the baculovirus/Sf9 cells production system. Replacement of truncated ITRs with WT and additional wtAAV2 sequences has an impact on the two major features of rAAV production: (1) a rise from 10% to 40% of full capsids obtained, and (2) up to a 10-fold reduction in non-rAAV encapsidated DNA. Furthermore, this study considered the impact on these major parameters of additional ITR elements and ITRs coupled with various regulatory elements of different origins. Implementation of the use of complete ITRs in the frame of the baculovirus-based rAAV expression system is one step that will be required to optimize the quality of rAAV-based gene therapy drugs.


Assuntos
Dependovirus/genética , Vetores Genéticos/metabolismo , Sequências Repetidas Terminais/genética , Animais , Baculoviridae/genética , Western Blotting , DNA Viral/isolamento & purificação , DNA Viral/metabolismo , Vetores Genéticos/genética , Reação em Cadeia da Polimerase em Tempo Real , Células Sf9 , Spodoptera , Ultracentrifugação
12.
Plant Sci ; 247: 49-59, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27095399

RESUMO

Salinity represents one of the most important constraints that adversely affect plants growth and productivity. In this study, we aimed at determining possible differences between salt tolerant and salt sensitive species in early salt stress response. To this purpose, we subjected suspension-cultured cells from the halophyte Cakile maritima and the glycophyte Arabidopsis thaliana, two Brassicaceae, to salt stress and compared their behavior. In both species we could observe a time and dose dependent programmed cell death requiring an active metabolism, a dysfunction of mitochondria and caspase-like activation although C. maritima cells appeared less sensitive than A. thaliana cells. This capacity to mitigate salt stress could be due to a higher ascorbate pool that could allow C. maritima reducing the oxidative stress generated in response to NaCl. It further appeared that a higher number of C. maritima cultured cells when compared to A. thaliana could efficiently manage the Na(+) accumulation into the cytoplasm through non selective cation channels allowing also reducing the ROS generation and the subsequent cell death.


Assuntos
Apoptose/efeitos dos fármacos , Arabidopsis/fisiologia , Ácido Ascórbico/metabolismo , Brassicaceae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/farmacologia , Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Brassicaceae/efeitos dos fármacos , Células Cultivadas , Citoplasma/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo , Salinidade , Plantas Tolerantes a Sal , Sódio/metabolismo , Estresse Fisiológico
13.
Plant Sci ; 238: 148-57, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26259183

RESUMO

Deoxynivalenol (DON) is a mycotoxin affecting animals and plants. This toxin synthesized by Fusarium culmorum and Fusarium graminearum is currently believed to play a decisive role in the fungal phytopathogenesis as a virulence factor. Using cultured cells of Nicotiana tabacum BY2, we showed that DON-induced programmed cell death (PCD) could require transcription and translation processes, in contrast to what was observed in animal cells. DON could induce different cross-linked pathways involving (i) reactive oxygen species (ROS) generation linked, at least partly, to a mitochondrial dysfunction and a transcriptional down-regulation of the alternative oxidase (Aox1) gene and (ii) regulation of ion channel activities participating in cell shrinkage, to achieve PCD.


Assuntos
Apoptose/efeitos dos fármacos , Micotoxinas/toxicidade , Nicotiana/citologia , Células Vegetais/metabolismo , Tricotecenos/toxicidade , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Células Vegetais/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/efeitos dos fármacos , Suspensões , Nicotiana/efeitos dos fármacos , Nicotiana/enzimologia , Nicotiana/genética
14.
Plant Signal Behav ; 10(3): e1000160, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25760034

RESUMO

Lipopolysaccharides (LPS) are a component of the outer cell surface of almost all Gram-negative bacteria and play an essential role for bacterial growth and survival. Lipopolysaccharides represent typical microbe-associated molecular pattern (MAMP) molecules and have been reported to induce defense-related responses, including the expression of defense genes and the suppression of the hypersensitive response in plants. However, depending on their origin and the challenged plant, LPS were shown to have complex and different roles. In this study we showed that LPS from plant pathogens Pectobacterium atrosepticum and Pectobacterium carotovorum subsp. carotovorum induce common and different responses in A. thaliana cells when compared to those induced by LPS from non-phytopathogens Escherichia coli and Pseudomonas aeruginosa. Among common responses to both types of LPS are the transcription of defense genes and their ability to limit of cell death induced by Pectobacterium carotovorum subsp carotovorum. However, the differential kinetics and amplitude in reactive oxygen species (ROS) generation seemed to regulate defense gene transcription and be determinant to induce programmed cell death in response to LPS from the plant pathogenic Pectobacterium. These data suggest that different signaling pathways could be activated by LPS in A. thaliana cells.


Assuntos
Arabidopsis/efeitos dos fármacos , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Lipopolissacarídeos/farmacologia , Pectobacterium carotovorum/metabolismo , Doenças das Plantas/microbiologia , Transcrição Gênica , Arabidopsis/genética , Arabidopsis/metabolismo , Morte Celular/genética , Resistência à Doença/genética , Genes de Plantas , Pectobacterium carotovorum/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
15.
J Exp Bot ; 65(5): 1361-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24420571

RESUMO

Hyperosmotic stresses represent one of the major constraints that adversely affect plants growth, development, and productivity. In this study, the focus was on early responses to hyperosmotic stress- (NaCl and sorbitol) induced reactive oxygen species (ROS) generation, cytosolic Ca(2+) concentration ([Ca(2+)]cyt) increase, ion fluxes, and mitochondrial potential variations, and on their links in pathways leading to programmed cell death (PCD). By using BY-2 tobacco cells, it was shown that both NaCl- and sorbitol-induced PCD seemed to be dependent on superoxide anion (O2·(-)) generation by NADPH-oxidase. In the case of NaCl, an early influx of sodium through non-selective cation channels participates in the development of PCD through mitochondrial dysfunction and NADPH-oxidase-dependent O2·(-) generation. This supports the hypothesis of different pathways in NaCl- and sorbitol-induced cell death. Surprisingly, other shared early responses, such as [Ca(2+)]cyt increase and singlet oxygen production, do not seem to be involved in PCD.


Assuntos
Apoptose/fisiologia , Cálcio/metabolismo , Nicotiana/fisiologia , Pressão Osmótica , Oxigênio Singlete/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Oxigênio Singlete/farmacologia , Cloreto de Sódio/farmacologia , Sorbitol/farmacologia , Superóxidos/metabolismo , Nicotiana/efeitos dos fármacos
16.
Hum Mol Genet ; 15(1): 53-64, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16311251

RESUMO

Metachromatic leukodystrophy (MLD) is a neurodegenerative lysosomal disease caused by a defect of the enzyme arylsulfatase A (ARSA) that disrupts the degradation of sulfatides (Sulf) in neurons and glial cells. Therapy for MLD requires active production of ARSA in the brain to prevent demyelination and neuronal damage, and efficient delivery of ARSA to act faster than disease progression, particularly in the rapidly progressive late infantile form. We used an adeno-associated virus serotype 5 (AAV5) vector to express the human ARSA gene in the brain of MLD mouse model. We achieved rapid, extensive and long-lasting expression of the recombinant ARSA in the brain, cerebellum and brainstem from at least 3 to 15 months post-injection. Analysis of the vector genome and ARSA distribution gave evidence for in vivo cross-correction of many untransduced neurons and astrocytes. ARSA delivery rapidly reversed Sulf storage and prevented neuropathological abnormalities and neuromotor impairment. We believe that AAV5-mediated brain delivery of ARSA is a potentially efficacious therapeutic strategy for MLD patients, especially for those with rapidly progressive form of the disease.


Assuntos
Encéfalo/metabolismo , Cerebrosídeo Sulfatase/metabolismo , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Leucodistrofia Metacromática/terapia , Adenoviridae , Análise de Variância , Animais , Encéfalo/patologia , Cerebrosídeo Sulfatase/genética , Eletrofisiologia , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Leucodistrofia Metacromática/enzimologia , Camundongos , Camundongos Mutantes , Teste de Desempenho do Rota-Rod
17.
J Gene Med ; 6(5): 555-64, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15133766

RESUMO

BACKGROUND: The development of stable producer cell lines for recombinant adeno-associated virus (rAAV) assembly is a strategy followed by many groups to develop scalable production methods suitable for good manufacturing practice (GMP) requirements. The major drawback of this method lies in the requirement for replicating adenovirus (Ad) for rAAV assembly. In the present study, we analyzed the ability of several replication-defective herpes simplex type 1 (HSV-1) helper viruses to induce rAAV2 particle production from stable producer cell lines. METHODS: Several stable rAAV producer cell clones were infected with wild-type and replication-defective HSV strains and analyzed for rep-cap gene amplification, viral protein synthesis and rAAV titers achieved. In vivo analysis following rAAV injection in the murine brain was also conducted to evaluate the toxicity and biopotency of the rAAV stocks. RESULTS: We demonstrated that an HSV strain mutated in the UL30 polymerase gene could efficiently be used in this context, resulting in rAAV titers similar to those measured with wild-type HSV or Ad. Importantly, with respect to clinical developments, the use of this mutant resulted in rAAV stocks which were consistently devoid of contaminating HSV particles and fully active in vivo in the murine central nervous system with no detectable toxicity. CONCLUSIONS: This study, together with our previous report describing a rAAV chromatography-based purification process, contributes to the definition of an entirely scalable process for the generation of rAAV particles.


Assuntos
Dependovirus/fisiologia , Herpesvirus Humano 1/fisiologia , Replicação Viral , Animais , Chlorocebus aethiops , Dependovirus/genética , Feminino , Vetores Genéticos , Células HeLa , Herpesvirus Humano 1/genética , Humanos , Camundongos , Mutação , Recombinação Genética , Células Vero , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...