Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
CRISPR J ; 7(1): 53-67, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353623

RESUMO

We developed an efficient CRISPR prime editing protocol and generated isogenic-induced pluripotent stem cell (iPSC) lines carrying heterozygous or homozygous alleles for putatively causal single nucleotide variants at six type 2 diabetes loci (ABCC8, MTNR1B, TCF7L2, HNF4A, CAMK1D, and GCK). Our two-step sequence-based approach to first identify transfected cell pools with the highest fraction of edited cells significantly reduced the downstream efforts to isolate single clones of edited cells. We found that prime editing can make targeted genetic changes in iPSC and optimization of system components and guide RNA designs that were critical to achieve acceptable efficiency. Systems utilizing PEmax, epegRNA modifications, and MLH1dn provided significant benefit, producing editing efficiencies of 36-73%. Editing success and pegRNA design optimization required for each variant differed depending on the sequence at the target site. With attention to design, prime editing is a promising approach to generate isogenic iPSC lines, enabling the study of specific genetic changes in a common genetic background.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Pluripotentes Induzidas , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , RNA Guia de Sistemas CRISPR-Cas
2.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961277

RESUMO

Complete characterization of the genetic effects on gene expression is needed to elucidate tissue biology and the etiology of complex traits. Here, we analyzed 2,344 subcutaneous adipose tissue samples and identified 34K conditionally distinct expression quantitative trait locus (eQTL) signals in 18K genes. Over half of eQTL genes exhibited at least two eQTL signals. Compared to primary signals, non-primary signals had lower effect sizes, lower minor allele frequencies, and less promoter enrichment; they corresponded to genes with higher heritability and higher tolerance for loss of function. Colocalization of eQTL with conditionally distinct genome-wide association study signals for 28 cardiometabolic traits identified 3,605 eQTL signals for 1,861 genes. Inclusion of non-primary eQTL signals increased colocalized signals by 46%. Among 30 genes with ≥2 pairs of colocalized signals, 21 showed a mediating gene dosage effect on the trait. Thus, expanded eQTL identification reveals more mechanisms underlying complex traits and improves understanding of the complexity of gene expression regulation.

3.
Cell Metab ; 35(11): 1897-1914.e11, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37858332

RESUMO

Genetic studies have identified numerous loci associated with type 2 diabetes (T2D), but the functional roles of many loci remain unexplored. Here, we engineered isogenic knockout human embryonic stem cell lines for 20 genes associated with T2D risk. We examined the impacts of each knockout on ß cell differentiation, functions, and survival. We generated gene expression and chromatin accessibility profiles on ß cells derived from each knockout line. Analyses of T2D-association signals overlapping HNF4A-dependent ATAC peaks identified a likely causal variant at the FAIM2 T2D-association signal. Additionally, the integrative association analyses identified four genes (CP, RNASE1, PCSK1N, and GSTA2) associated with insulin production, and two genes (TAGLN3 and DHRS2) associated with ß cell sensitivity to lipotoxicity. Finally, we leveraged deep ATAC-seq read coverage to assess allele-specific imbalance at variants heterozygous in the parental line and identified a single likely functional variant at each of 23 T2D-association signals.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Embrionárias Humanas , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Células Secretoras de Insulina/metabolismo , Polimorfismo de Nucleotídeo Único , Carbonil Redutase (NADPH)/genética , Carbonil Redutase (NADPH)/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(35): e2206612120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603758

RESUMO

Genetic association studies have identified hundreds of independent signals associated with type 2 diabetes (T2D) and related traits. Despite these successes, the identification of specific causal variants underlying a genetic association signal remains challenging. In this study, we describe a deep learning (DL) method to analyze the impact of sequence variants on enhancers. Focusing on pancreatic islets, a T2D relevant tissue, we show that our model learns islet-specific transcription factor (TF) regulatory patterns and can be used to prioritize candidate causal variants. At 101 genetic signals associated with T2D and related glycemic traits where multiple variants occur in linkage disequilibrium, our method nominates a single causal variant for each association signal, including three variants previously shown to alter reporter activity in islet-relevant cell types. For another signal associated with blood glucose levels, we biochemically test all candidate causal variants from statistical fine-mapping using a pancreatic islet beta cell line and show biochemical evidence of allelic effects on TF binding for the model-prioritized variant. To aid in future research, we publicly distribute our model and islet enhancer perturbation scores across ~67 million genetic variants. We anticipate that DL methods like the one presented in this study will enhance the prioritization of candidate causal variants for functional studies.


Assuntos
Aprendizado Profundo , Diabetes Mellitus Tipo 2 , Elementos Facilitadores Genéticos , Ilhotas Pancreáticas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Variação Genética , Humanos , Simulação por Computador
5.
Nat Genet ; 55(7): 1149-1163, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386251

RESUMO

Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.


Assuntos
Paralisia Facial , Animais , Camundongos , Paralisia Facial/genética , Paralisia Facial/congênito , Paralisia Facial/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Neurônios Motores/metabolismo , Neurogênese , Neurônios Eferentes
6.
bioRxiv ; 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37333221

RESUMO

Disruption of pancreatic islet function and glucose homeostasis can lead to the development of sustained hyperglycemia, beta cell glucotoxicity, and ultimately type 2 diabetes (T2D). In this study, we sought to explore the effects of hyperglycemia on human pancreatic islet (HPI) gene expression by exposing HPIs from two donors to low (2.8mM) and high (15.0mM) glucose concentrations over 24 hours, assaying the transcriptome at seven time points using single-cell RNA sequencing (scRNA-seq). We modeled time as both a discrete and continuous variable to determine momentary and longitudinal changes in transcription associated with islet time in culture or glucose exposure. Across all cell types, we identified 1,528 genes associated with time, 1,185 genes associated with glucose exposure, and 845 genes associated with interaction effects between time and glucose. We clustered differentially expressed genes across cell types and found 347 modules of genes with similar expression patterns across time and glucose conditions, including two beta cell modules enriched in genes associated with T2D. Finally, by integrating genomic features from this study and genetic summary statistics for T2D and related traits, we nominate 363 candidate effector genes that may underlie genetic associations for T2D and related traits.

7.
Nat Genet ; 55(6): 973-983, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37291194

RESUMO

Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in >55,000 participants from three ancestry groups. We identified ten new loci (P < 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Insulina/genética , Estudo de Associação Genômica Ampla , Resistência à Insulina/genética , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Glicemia/genética
8.
bioRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37214922

RESUMO

Genetic studies have identified numerous loci associated with type 2 diabetes (T2D), but the functional role of many loci has remained unexplored. In this study, we engineered isogenic knockout human embryonic stem cell (hESC) lines for 20 genes associated with T2D risk. We systematically examined ß-cell differentiation, insulin production and secretion, and survival. We performed RNA-seq and ATAC-seq on hESC-ß cells from each knockout line. Analyses of T2D GWAS signals overlapping with HNF4A-dependent ATAC peaks identified a specific SNP as a likely causal variant. In addition, we performed integrative association analyses and identified four genes ( CP, RNASE1, PCSK1N and GSTA2 ) associated with insulin production, and two genes ( TAGLN3 and DHRS2 ) associated with sensitivity to lipotoxicity. Finally, we leveraged deep ATAC-seq read coverage to assess allele-specific imbalance at variants heterozygous in the parental hESC line, to identify a single likely functional variant at each of 23 T2D GWAS signals.

9.
Proc Natl Acad Sci U S A ; 120(7): e2206797120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36757889

RESUMO

Genetic studies have identified ≥240 loci associated with the risk of type 2 diabetes (T2D), yet most of these loci lie in non-coding regions, masking the underlying molecular mechanisms. Recent studies investigating mRNA expression in human pancreatic islets have yielded important insights into the molecular drivers of normal islet function and T2D pathophysiology. However, similar studies investigating microRNA (miRNA) expression remain limited. Here, we present data from 63 individuals, the largest sequencing-based analysis of miRNA expression in human islets to date. We characterized the genetic regulation of miRNA expression by decomposing the expression of highly heritable miRNAs into cis- and trans-acting genetic components and mapping cis-acting loci associated with miRNA expression [miRNA-expression quantitative trait loci (eQTLs)]. We found i) 84 heritable miRNAs, primarily regulated by trans-acting genetic effects, and ii) 5 miRNA-eQTLs. We also used several different strategies to identify T2D-associated miRNAs. First, we colocalized miRNA-eQTLs with genetic loci associated with T2D and multiple glycemic traits, identifying one miRNA, miR-1908, that shares genetic signals for blood glucose and glycated hemoglobin (HbA1c). Next, we intersected miRNA seed regions and predicted target sites with credible set SNPs associated with T2D and glycemic traits and found 32 miRNAs that may have altered binding and function due to disrupted seed regions. Finally, we performed differential expression analysis and identified 14 miRNAs associated with T2D status-including miR-187-3p, miR-21-5p, miR-668, and miR-199b-5p-and 4 miRNAs associated with a polygenic score for HbA1c levels-miR-216a, miR-25, miR-30a-3p, and miR-30a-5p.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , MicroRNAs , Humanos , MicroRNAs/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Hemoglobinas Glicadas , Ilhotas Pancreáticas/metabolismo , Locos de Características Quantitativas/genética
10.
Nature ; 610(7933): 704-712, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224396

RESUMO

Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.


Assuntos
Estatura , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Humanos , Estatura/genética , Frequência do Gene/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Haplótipos/genética , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Europa (Continente)/etnologia , Tamanho da Amostra , Fenótipo
11.
Am J Hum Genet ; 109(10): 1727-1741, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36055244

RESUMO

Transcriptomics data have been integrated with genome-wide association studies (GWASs) to help understand disease/trait molecular mechanisms. The utility of metabolomics, integrated with transcriptomics and disease GWASs, to understand molecular mechanisms for metabolite levels or diseases has not been thoroughly evaluated. We performed probabilistic transcriptome-wide association and locus-level colocalization analyses to integrate transcriptomics results for 49 tissues in 706 individuals from the GTEx project, metabolomics results for 1,391 plasma metabolites in 6,136 Finnish men from the METSIM study, and GWAS results for 2,861 disease traits in 260,405 Finnish individuals from the FinnGen study. We found that genetic variants that regulate metabolite levels were more likely to influence gene expression and disease risk compared to the ones that do not. Integrating transcriptomics with metabolomics results prioritized 397 genes for 521 metabolites, including 496 previously identified gene-metabolite pairs with strong functional connections and suggested 33.3% of such gene-metabolite pairs shared the same causal variants with genetic associations of gene expression. Integrating transcriptomics and metabolomics individually with FinnGen GWAS results identified 1,597 genes for 790 disease traits. Integrating transcriptomics and metabolomics jointly with FinnGen GWAS results helped pinpoint metabolic pathways from genes to diseases. We identified putative causal effects of UGT1A1/UGT1A4 expression on gallbladder disorders through regulating plasma (E,E)-bilirubin levels, of SLC22A5 expression on nasal polyps and plasma carnitine levels through distinct pathways, and of LIPC expression on age-related macular degeneration through glycerophospholipid metabolic pathways. Our study highlights the power of integrating multiple sets of molecular traits and GWAS results to deepen understanding of disease pathophysiology.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Bilirrubina , Carnitina , Glicerofosfolipídeos , Humanos , Masculino , Metabolômica , Locos de Características Quantitativas/genética , Membro 5 da Família 22 de Carreadores de Soluto/genética , Transcriptoma/genética
12.
Int J Obes (Lond) ; 46(8): 1478-1486, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35589964

RESUMO

BACKGROUND: COVID-19 severity varies widely. Although some demographic and cardio-metabolic factors, including age and obesity, are associated with increasing risk of severe illness, the underlying mechanism(s) are uncertain. SUBJECTS/METHODS: In a meta-analysis of three independent studies of 1471 participants in total, we investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 (ACE2), measured by RNA-Seq, which acts as a receptor for SARS-CoV-2 cellular entry. RESULTS: Lower adipose tissue ACE2 expression was associated with multiple adverse cardio-metabolic health indices, including type 2 diabetes (T2D) (P = 9.14 × 10-6), obesity status (P = 4.81 × 10-5), higher serum fasting insulin (P = 5.32 × 10-4), BMI (P = 3.94 × 10-4), and lower serum HDL levels (P = 1.92 × 10-7). ACE2 expression was also associated with estimated proportions of cell types in adipose tissue: lower expression was associated with a lower proportion of microvascular endothelial cells (P = 4.25 × 10-4) and higher proportion of macrophages (P = 2.74 × 10-5). Despite an estimated heritability of 32%, we did not identify any proximal or distal expression quantitative trait loci (eQTLs) associated with adipose tissue ACE2 expression. CONCLUSIONS: Our results demonstrate that individuals with cardio-metabolic features known to increase risk of severe COVID-19 have lower background ACE2 levels in this highly relevant tissue. Reduced adipose tissue ACE2 expression may contribute to the pathophysiology of cardio-metabolic diseases, as well as the associated increased risk of severe COVID-19.


Assuntos
Tecido Adiposo , Enzima de Conversão de Angiotensina 2 , COVID-19 , Tecido Adiposo/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/complicações , COVID-19/genética , Fatores de Risco Cardiometabólico , Diabetes Mellitus Tipo 2/genética , Células Endoteliais/metabolismo , Humanos , Obesidade , SARS-CoV-2
13.
Nat Commun ; 13(1): 1644, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347128

RESUMO

Few studies have explored the impact of rare variants (minor allele frequency < 1%) on highly heritable plasma metabolites identified in metabolomic screens. The Finnish population provides an ideal opportunity for such explorations, given the multiple bottlenecks and expansions that have shaped its history, and the enrichment for many otherwise rare alleles that has resulted. Here, we report genetic associations for 1391 plasma metabolites in 6136 men from the late-settlement region of Finland. We identify 303 novel association signals, more than one third at variants rare or enriched in Finns. Many of these signals identify genes not previously implicated in metabolite genome-wide association studies and suggest mechanisms for diseases and disease-related traits.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Alelos , Finlândia , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Fenótipo
14.
Am J Hum Genet ; 109(1): 81-96, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34932938

RESUMO

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.


Assuntos
Exoma , Variação Genética , Estudo de Associação Genômica Ampla , Lipídeos/sangue , Fases de Leitura Aberta , Alelos , Glicemia/genética , Estudos de Casos e Controles , Biologia Computacional/métodos , Bases de Dados Genéticas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla/métodos , Humanos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Anotação de Sequência Molecular , Herança Multifatorial , Fenótipo , Polimorfismo de Nucleotídeo Único
15.
Cell Metab ; 33(8): 1577-1591.e7, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34081913

RESUMO

Recent clinical data have suggested a correlation between coronavirus disease 2019 (COVID-19) and diabetes. Here, we describe the detection of SARS-CoV-2 viral antigen in pancreatic beta cells in autopsy samples from individuals with COVID-19. Single-cell RNA sequencing and immunostaining from ex vivo infections confirmed that multiple types of pancreatic islet cells were susceptible to SARS-CoV-2, eliciting a cellular stress response and the induction of chemokines. Upon SARS-CoV-2 infection, beta cells showed a lower expression of insulin and a higher expression of alpha and acinar cell markers, including glucagon and trypsin1, respectively, suggesting cellular transdifferentiation. Trajectory analysis indicated that SARS-CoV-2 induced eIF2-pathway-mediated beta cell transdifferentiation, a phenotype that could be reversed with trans-integrated stress response inhibitor (trans-ISRIB). Altogether, this study demonstrates an example of SARS-CoV-2 infection causing cell fate change, which provides further insight into the pathomechanisms of COVID-19.


Assuntos
COVID-19/virologia , Transdiferenciação Celular , Células Secretoras de Insulina/virologia , SARS-CoV-2/patogenicidade , Acetamidas/farmacologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , COVID-19/mortalidade , Transdiferenciação Celular/efeitos dos fármacos , Chlorocebus aethiops , Cicloexilaminas/farmacologia , Citocinas/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Glucagon , Interações Hospedeiro-Patógeno , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Transdução de Sinais , Técnicas de Cultura de Tecidos , Tripsina/metabolismo , Células Vero , Adulto Jovem
16.
Nat Commun ; 12(1): 3505, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108472

RESUMO

Hundreds of thousands of genetic variants have been reported to cause severe monogenic diseases, but the probability that a variant carrier develops the disease (termed penetrance) is unknown for virtually all of them. Additionally, the clinical utility of common polygenetic variation remains uncertain. Using exome sequencing from 77,184 adult individuals (38,618 multi-ancestral individuals from a type 2 diabetes case-control study and 38,566 participants from the UK Biobank, for whom genotype array data were also available), we apply clinical standard-of-care gene variant curation for eight monogenic metabolic conditions. Rare variants causing monogenic diabetes and dyslipidemias display effect sizes significantly larger than the top 1% of the corresponding polygenic scores. Nevertheless, penetrance estimates for monogenic variant carriers average 60% or lower for most conditions. We assess epidemiologic and genetic factors contributing to risk prediction in monogenic variant carriers, demonstrating that inclusion of polygenic variation significantly improves biomarker estimation for two monogenic dyslipidemias.


Assuntos
Diabetes Mellitus Tipo 2/genética , Dislipidemias/genética , Predisposição Genética para Doença/genética , Adulto , Variação Biológica da População , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/metabolismo , Exoma/genética , Genótipo , Humanos , Herança Multifatorial , Penetrância , Medição de Risco
17.
Am J Hum Genet ; 108(7): 1169-1189, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34038741

RESUMO

Identifying the molecular mechanisms by which genome-wide association study (GWAS) loci influence traits remains challenging. Chromatin accessibility quantitative trait loci (caQTLs) help identify GWAS loci that may alter GWAS traits by modulating chromatin structure, but caQTLs have been identified in a limited set of human tissues. Here we mapped caQTLs in human liver tissue in 20 liver samples and identified 3,123 caQTLs. The caQTL variants are enriched in liver tissue promoter and enhancer states and frequently disrupt binding motifs of transcription factors expressed in liver. We predicted target genes for 861 caQTL peaks using proximity, chromatin interactions, correlation with promoter accessibility or gene expression, and colocalization with expression QTLs. Using GWAS signals for 19 liver function and/or cardiometabolic traits, we identified 110 colocalized caQTLs and GWAS signals, 56 of which contained a predicted caPeak target gene. At the LITAF LDL-cholesterol GWAS locus, we validated that a caQTL variant showed allelic differences in protein binding and transcriptional activity. These caQTLs contribute to the epigenomic characterization of human liver and help identify molecular mechanisms and genes at GWAS loci.


Assuntos
Cromatina/metabolismo , Fígado/metabolismo , Locos de Características Quantitativas , Motivos de Aminoácidos , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcriptoma
18.
medRxiv ; 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32817962

RESUMO

COVID-19 severity has varied widely, with demographic and cardio-metabolic factors increasing risk of severe reactions to SARS-CoV-2 infection, but the underlying mechanisms for this remain uncertain. We investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 ( ACE2 ), which has been shown to act as a receptor for SARS-CoV-2 cellular entry. In a meta-analysis of three independent studies including up to 1,471 participants, lower adipose tissue ACE2 expression was associated with adverse cardio-metabolic health indices including type 2 diabetes (T2D) and obesity status, higher serum fasting insulin and BMI, and lower serum HDL levels (P<5.32x10 -4 ). ACE2 expression levels were also associated with estimated proportions of cell types in adipose tissue; lower ACE2 expression was associated with a lower proportion of microvascular endothelial cells (P=4.25x10 -4 ) and higher macrophage proportion (P=2.74x10 -5 ), suggesting a link to inflammation. Despite an estimated heritability of 32%, we did not identify any proximal or distal genetic variants (eQTLs) associated with adipose tissue ACE2 expression. Our results demonstrate that at-risk individuals have lower background ACE2 levels in this highly relevant tissue. Further studies will be required to establish how this may contribute to increased COVID-19 severity.

19.
Biol Methods Protoc ; 5(1): bpz019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31984226

RESUMO

Single-cell RNA sequencing (scRNA-seq) of human primary tissues is a rapidly emerging tool for investigating human health and disease at the molecular level. However, optimal processing of solid tissues presents a number of technical and logistical challenges, especially for tissues that are only available at autopsy, which includes pancreatic islets, a tissue that is highly relevant to diabetes. To assess the possible effects of different sample preparation protocols on fresh islet samples, we performed a detailed comparison of scRNA-seq data generated with islets isolated from a human donor but processed according to four treatment strategies, including fixation and cryopreservation. We found significant and reproducible differences in the proportion of cell types identified, and more minor effects on cell-specific patterns of gene expression. Fresh islets from a second donor confirmed gene expression signatures of alpha and beta subclusters. These findings may well apply to other tissues, emphasizing the need for careful consideration when choosing processing methods, comparing results between different studies, and/or interpreting data in the context of multiple cell types from preserved tissue.

20.
Blood ; 133(26): 2753-2764, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31064750

RESUMO

Patients with classic hydroa vacciniforme-like lymphoproliferative disorder (HVLPD) typically have high levels of Epstein-Barr virus (EBV) DNA in T cells and/or natural killer (NK) cells in blood and skin lesions induced by sun exposure that are infiltrated with EBV-infected lymphocytes. HVLPD is very rare in the United States and Europe but more common in Asia and South America. The disease can progress to a systemic form that may result in fatal lymphoma. We report our 11-year experience with 16 HVLPD patients from the United States and England and found that whites were less likely to develop systemic EBV disease (1/10) than nonwhites (5/6). All (10/10) of the white patients were generally in good health at last follow-up, while two-thirds (4/6) of the nonwhite patients required hematopoietic stem cell transplantation. Nonwhite patients had later age of onset of HVLPD than white patients (median age, 8 vs 5 years) and higher levels of EBV DNA (median, 1 515 000 vs 250 000 copies/ml) and more often had low numbers of NK cells (83% vs 50% of patients) and T-cell clones in the blood (83% vs 30% of patients). RNA-sequencing analysis of an HVLPD skin lesion in a white patient compared with his normal skin showed increased expression of interferon-γ and chemokines that attract T cells and NK cells. Thus, white patients with HVLPD were less likely to have systemic disease with EBV and had a much better prognosis than nonwhite patients. This trial was registered at www.clinicaltrials.gov as #NCT00369421 and #NCT00032513.


Assuntos
Infecções por Vírus Epstein-Barr/patologia , Hidroa Vaciniforme/virologia , Transtornos Linfoproliferativos/patologia , Transtornos Linfoproliferativos/virologia , Criança , Pré-Escolar , Infecções por Vírus Epstein-Barr/etnologia , Infecções por Vírus Epstein-Barr/imunologia , Feminino , Humanos , Transtornos Linfoproliferativos/etnologia , Masculino , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...