Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Nephrol ; 21(2): 203-211, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27278932

RESUMO

BACKGROUND: ADPKD is a renal pathology caused by mutations of PKD1 and PKD2 genes, which encode for polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC1 plays an important role regulating several signal transducers, including cAMP and mTOR, which are involved in abnormal cell proliferation of ADPKD cells leading to the development and expansion of kidney cysts that are a typical hallmark of this disease. Therefore, the inhibition of both pathways could potentiate the reduction of cell proliferation enhancing benefits for ADPKD patients. METHODS: The inhibition of cAMP- and mTOR-related signalling was performed by Cl-IB-MECA, an agonist of A3 receptors, and rapamycin, respectively. Protein kinase activity was evaluated by immunoblot and cell growth was analyzed by direct cell counting. RESULTS: The activation of A3AR by the specific agonist Cl-IB-MECA causes a marked reduction of CREB, mTOR, and ERK phosphorylation in kidney tissues of Pkd1 flox/-: Ksp-Cre polycystic mice and reduces cell growth in ADPKD cell lines, but not affects the kidney weight. The combined sequential treatment with rapamycin and Cl-IB-MECA in ADPKD cells potentiates the reduction of cell proliferation compared with the individual compound by the inhibition of CREB, mTOR, and ERK kinase activity. Conversely, the simultaneous application of these drugs counteracts their effect on cell growth, because the inhibition of ERK kinase activity is lost. CONCLUSION: The double treatment with rapamycin and Cl-IB-MECA may have synergistic effects on the inhibition of cell proliferation in ADPKD cells suggesting that combined therapies could improve renal function in ADPKD patients.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/antagonistas & inibidores , Rim/efeitos dos fármacos , Rim Policístico Autossômico Dominante/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Proteína de Ligação a CREB/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Predisposição Genética para Doença , Humanos , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosforilação , Rim Policístico Autossômico Dominante/enzimologia , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Serina-Treonina Quinases TOR/metabolismo , Canais de Cátion TRPP/deficiência , Canais de Cátion TRPP/genética , Fatores de Tempo
2.
FEBS Open Bio ; 4: 952-65, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426415

RESUMO

Renal cell carcinoma is a common neoplasia of the adult kidney that accounts for about 3% of adult malignancies. Clear cell renal carcinoma is the most frequent subtype of kidney cancer and 20-40% of patients develop metastases. The absence of appropriate biomarkers complicates diagnosis and prognosis of this disease. In this regard, small noncoding RNAs (microRNAs), which are mutated in several neoplastic diseases including kidney carcinoma, may be optimal candidates as biomarkers for diagnosis and prognosis of this kind of cancer. Here we show that patients with clear cell kidney carcinoma that express low levels of miR501-5p exhibited a good prognosis compared with patients with unchanged or high levels of this microRNA. Consistently, in kidney carcinoma cells the downregulation of miR501-5p induced an increased caspase-3 activity, p53 expression as well as decreased mTOR activation, leading to stimulation of the apoptotic pathway. Conversely, miR501-5p upregulation enhanced the activity of mTOR and promoted both cell proliferation and survival. These biological processes occurred through p53 inactivation by proteasome degradation in a mechanism involving MDM2-mediated p53 ubiquitination. Our results support a role for miR501-5p in balancing apoptosis and cell survival in clear cell renal carcinoma. In particular, the downregulation of microRNA501-5p promotes a good prognosis, while its upregulation contributes to a poor prognosis, in particular, if associated with p53 and MDM2 overexpression and mTOR activation. Thus, the expression of miR501-5p is a possible biomarker for the prognosis of clear cell renal carcinoma.

3.
Biochem Biophys Res Commun ; 441(3): 668-74, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24184483

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 µg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 µg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G0/G1 phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new opportunities for the therapy of ADPKD patients.


Assuntos
Apoptose/efeitos dos fármacos , Berberina/farmacologia , Proliferação de Células/efeitos dos fármacos , Rim Policístico Autossômico Dominante/patologia , Animais , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fase G1/efeitos dos fármacos , Humanos , Túbulos Renais/citologia , Túbulos Renais/efeitos dos fármacos , Camundongos , Rim Policístico Autossômico Dominante/enzimologia , Rim Policístico Autossômico Dominante/genética , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Canais de Cátion TRPP/genética
4.
J Mol Med (Berl) ; 90(11): 1267-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22570239

RESUMO

In autosomal dominant polycystic kidney disease (ADPKD), renal cyst development and enlargement, as well as cell growth, are associated with alterations in several pathways, including cAMP and activator protein 1 (AP1) signalling. However, the precise mechanism by which these molecules stimulate cell proliferation is not yet fully understood. We now show by microarray analysis, luciferase assay, mutagenesis, and chromatin immunoprecipitation that CREB and AP1 contribute to increased expression of the amphiregulin gene, which codifies for an epidermal growth factor-like peptide, in ADPKD cystic cells, thereby promoting their cell growth. Increased amphiregulin (AR) expression was associated with abnormal cell proliferation in both PKD1-depleted and -mutated epithelial cells, as well as primary cystic cell lines isolated from ADPKD kidney tissues. Consistently, normal AR expression and proliferation were re-established in cystic cells by the expression of a mouse full-length PC1. Finally, we show that anti-AR antibodies and inhibitors of AP1 are able to reduce cell proliferation in cystic cells by reducing AR expression and EGFR activity. AR can therefore be considered as one of the key activators of the growth of human ADPKD cystic cells and thus a new potential therapeutic target.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Glicoproteínas/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Rim Policístico Autossômico Dominante/metabolismo , Canais de Cátion TRPP/fisiologia , Fator de Transcrição AP-1/biossíntese , Anfirregulina , Animais , Proliferação de Células , AMP Cíclico/metabolismo , Família de Proteínas EGF , Inativação Gênica , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Mutagênese , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Rim Policístico Autossômico Dominante/genética , Regiões Promotoras Genéticas , Transdução de Sinais , Canais de Cátion TRPP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...