Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 104: 113-119, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29331425

RESUMO

Herein a label-free immunosensor based on electrolyte-gated organic field-effect transistor (EGOFET) was developed for the detection of procalcitonin (PCT), a sepsis marker. Antibodies specific to PCT were immobilized on the poly-3-hexylthiophene (P3HT) organic semiconductor surface through direct physical adsorption followed by a post-treatment with bovine serum albumin (BSA) which served as the blocking agent to prevent non-specific adsorption. Antibodies together with BSA (forming the whole biorecognition layer) served to selectively capture the procalcitonin target analyte. The entire immunosensor fabrication process was fast, requiring overall 45min to be completed before analyte sensing. The EGOFET immunosensor showed excellent electrical properties, comparable to those of bare P3HT based EGOFET confirming reliable biosensing with bio-functional EGOFET immunosensor. The detection limit of the immunosensor was as low as 2.2pM and within a range of clinical relevance. The relative standard deviation of the individual calibration data points, measured on immunosensors fabricated on different chips (reproducibility error) was below 7%. The developed immunosensor showed high selectivity to the PCT analyte which was evident through control experiments. This report of PCT detection is first of its kind among the electronic sensors based on EGOFETs. The developed sensor is versatile and compatible with low-cost fabrication techniques.


Assuntos
Técnicas Biossensoriais , Calcitonina/isolamento & purificação , Imunoensaio/métodos , Adsorção , Anticorpos Imobilizados/química , Calcitonina/química , Eletrólitos , Limite de Detecção , Semicondutores , Transistores Eletrônicos
2.
ACS Appl Mater Interfaces ; 8(31): 20168-75, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27443793

RESUMO

Simple Al/ZnO(NP)/Au diodes produced by spin coating of ZnO nanoparticle dispersions (ZnO(NP)) on Al/Al2O3 and Au substrates and subsequent Au deposition have been investigated to understand electron injection properties of more complex devices, incorporating ZnO(NP) as injection layer. Inverse I-V characteristics have been observed compared to conventional Al/ZnO(SP)/Au diodes produced by reactive ion sputtering of ZnO. SEM micrographs reveal that the void-containing contact of ZnO(NP) with the bottom Al electrode and the rough morphology of the top Au electrode are likely to be responsible for the observed injection and ejection probabilities of electrons. A simple tunneling model, incorporating the voids, explains the strongly reduced injection currents from Al whereas the top electrode fabricated by vapor deposition of Au onto the nanoparticle topology adopts the inverse ZnO(NP) morphology leading to enlarged injection areas combined with Au-tip landscapes. These tips in contrast to the smooth sputtered ZnO(SP) lead to electric field enhancement and strongly increased injection of electrons in reverse direction. The injected charge piles up at the barrier generated by voids between ZnO(NP) and the bottom electrode forcing a change in the barrier shape and therefore allowing for higher ejection rates. Both effects in combination explain the inverse I-V characteristic of nanoparticle based diodes.

3.
ACS Appl Mater Interfaces ; 4(12): 6835-41, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23163608

RESUMO

Indium zinc oxide thin-film transistors are fabricated via a precursor in solution route on silicon substrates with silicon dioxide gate dielectric. It is found that the extracted mobility rises, peaks, and then decreases with increasing precursor concentration instead of rising and saturating. Investigation with scanning probe techniques reveals full thickness variations within the film which are assumed to adversely affect charge transport. Additional layers are coated, and the extracted mobility is observed to increase up to 19.7 cm(2) V(-1) s(-1). The reasons for this are examined in detail by direct imaging with scanning tunneling microscopy and extracting electron density profiles from X-ray reflection measurements. It is found that the optimal concentration for single layer films is suboptimal when coating multiple layers and in fact using many layers of very low concentrations of precursor in the solution, leading to a dense, defect and void free film, affording the highest mobilities. A consistent qualitative model of layer formation is developed explaining how the morphology of the film develops as the concentration of precursor in the initial solution is varied.

4.
Org Lett ; 13(11): 2872-5, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21545087

RESUMO

By the self-assembly of a bis(meta-phenylene)-32-crown-10 bearing two electron-donating groups (carbazoles) with electron-accepting paraquat derivatives, the first [2]pseudorotaxane and the first pseudocryptand-type poly[2]pseudorotaxane based on bis(meta-phenylene)-32-crown-10 were isolated as crystalline solids as shown by X-ray analyses.

5.
Org Biomol Chem ; 3(11): 2114-21, 2005 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-15917898

RESUMO

Two isomers of bis(carbomethoxybenzo)-24-crown-8 (cis-BCMB24C8, 1, and trans-BCMB24C8, 2) were synthesized regiospecifically with acceptable to excellent yields. Cyclization in the presence of a template reagent, KPF(6), led to an essentially quantitative yield of the potassium complex of the crown ether 1; the isolated cyclization yield of pure was a remarkable 89%! The methods not only avoid the very difficult separation of the isomers, but also greatly shorten the synthesis time by eliminating syringe pump usage during cyclization. The complexations of the isomeric BCMB24C8 with dibenzylammonium hexafluorophosphate (10) were studied by NMR; association constants (Ka) for 1 and 2 with the dibenzylammonium cation are 190 and 312 M(-1), respectively. The X-ray crystal structures of crown ether and the complexes 1.KPF(6), 2.KPF(6) and pseudorotaxane 2.10 were determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...