Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1193, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331888

RESUMO

Only a few localised ice streams drain most of the ice from the Greenland Ice Sheet. Thus, understanding ice stream behaviour and its temporal variability is crucially important to predict future sea-level change. The interior trunk of the 700 km-long North-East Greenland Ice Stream (NEGIS) is remarkable due to the lack of any clear bedrock channel to explain its presence. Here, we present a 3-dimensional analysis of the folding and advection of its stratigraphic horizons, which shows that the localised flow and shear margins in the upper NEGIS were fully developed only ca 2000 years ago. Our results contradict the assumption that the ice stream has been stable throughout the Holocene in its current form and show that upper NEGIS-type development of ice streaming, with distinct shear margins and no bed topography relationship, can be established on time scales of hundreds of years, which is a major challenge for realistic mass-balance and sea-level rise projections.

2.
Sci Data ; 10(1): 525, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550324

RESUMO

We present a dataset of reconstructed three-dimensional (3D) englacial stratigraphic horizons in northern Greenland. The data cover four different regions representing key ice-dynamic settings in Greenland: (i) the onset of Petermann Glacier, (ii) a region upstream of the 79° North Glacier (Nioghalvfjerdsbræ), near the northern Greenland ice divide, (iii) the onset of the Northeast Greenland Ice Stream (NEGIS) and (iv) a 700 km wide region extending across the central ice divide over the entire northern part of central Greenland. In this paper, we promote the advantages of a 3D perspective of deformed englacial stratigraphy and explain how 3D horizons provide an improved basis for interpreting and reconstructing the ice-dynamic history. The 3D horizons are provided in various formats to allow a wide range of applications and reproducibility of results.

3.
PLoS One ; 14(4): e0201998, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31013270

RESUMO

Hominin evolution is characterized by progressive regional differentiation, as well as migration waves, leading to anatomically modern humans that are assumed to have emerged in Africa and spread over the whole world. Why or whether Africa was the source region of modern humans and what caused their spread remains subject of ongoing debate. We present a spatially explicit, stochastic numerical model that includes ongoing mutations, demic diffusion, assortative mating and migration waves. Diffusion and assortative mating alone result in a structured population with relatively homogeneous regions bound by sharp clines. The addition of migration waves results in a power-law distribution of wave areas: for every large wave, many more small waves are expected to occur. This suggests that one or more out-of-Africa migrations would probably have been accompanied by numerous smaller migration waves across the world. The migration waves are considered "spontaneous", as the current model excludes environmental or other extrinsic factors. Large waves preferentially emanate from the central areas of large, compact inhabited areas. During the Pleistocene, Africa was the largest such area most of the time, making Africa the statistically most likely origin of anatomically modern humans, without a need to invoke additional environmental or ecological drivers.


Assuntos
Evolução Biológica , Genoma Humano , Migração Humana/história , África , Feminino , História Antiga , Humanos , Masculino
4.
Philos Trans A Math Phys Eng Sci ; 375(2086)2017 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-28025295

RESUMO

The flow of glaciers and polar ice sheets is controlled by the highly anisotropic rheology of ice crystals that have hexagonal symmetry (ice lh). To improve our knowledge of ice sheet dynamics, it is necessary to understand how dynamic recrystallization (DRX) controls ice microstructures and rheology at different boundary conditions that range from pure shear flattening at the top to simple shear near the base of the sheets. We present a series of two-dimensional numerical simulations that couple ice deformation with DRX of various intensities, paying special attention to the effect of boundary conditions. The simulations show how similar orientations of c-axis maxima with respect to the finite deformation direction develop regardless of the amount of DRX and applied boundary conditions. In pure shear this direction is parallel to the maximum compressional stress, while it rotates towards the shear direction in simple shear. This leads to strain hardening and increased activity of non-basal slip systems in pure shear and to strain softening in simple shear. Therefore, it is expected that ice is effectively weaker in the lower parts of the ice sheets than in the upper parts. Strain-rate localization occurs in all simulations, especially in simple shear cases. Recrystallization suppresses localization, which necessitates the activation of hard, non-basal slip systems.This article is part of the themed issue 'Microdynamics of ice'.

5.
Nat Commun ; 7: 11427, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27126274

RESUMO

The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier.

6.
Am J Phys Anthropol ; 159(2): 342-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26381860

RESUMO

A variety of geometric morphometric methods have recently been used to describe dental shape variation in human evolutionary studies. However, the applicability of these methods is limited when teeth are worn or are difficult to orient accurately. Here we show that elliptical best fits on outlines of dental tissues below the crown provide basic size- and orientation-free shape descriptors. Using the dm(2) and M(3) as examples, we demonstrate that these descriptors can be used for taxonomic purposes, such as distinguishing between Neanderthal and recent modern human teeth. We propose that this approach can be a useful alternative to existing methodology.


Assuntos
Homem de Neandertal/anatomia & histologia , Odontometria/métodos , Paleodontologia/métodos , Coroa do Dente/anatomia & histologia , Animais , Antropologia Física , Fósseis , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...