Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 117(5): 1196-1212, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366366

RESUMO

Staphylococcus aureus is a Gram-positive commensal that can also cause a variety of infections in humans. S. aureus virulence factor gene expression is under tight control by a complex regulatory network, which includes, sigma factors, sRNAs, and two-component systems (TCS). Previous work in our laboratory demonstrated that overexpression of the sRNA tsr37 leads to an increase in bacterial aggregation. Here, we demonstrate that the clumping phenotype is dependent on a previously unannotated 88 amino acid protein encoded within the tsr37 sRNA transcript (which we named ScrA for S. aureus clumping regulator A). To investigate the mechanism of action of ScrA we performed proteomics and transcriptomics in a ScrA overexpressing strain and show that a number of surface adhesins are upregulated, while secreted proteases are downregulated. Results also showed upregulation of the SaeRS TCS, suggesting that ScrA is influencing SaeRS activity. Overexpression of ScrA in a saeR mutant abrogates the clumping phenotype confirming that ScrA functions via the Sae system. Finally, we identified the ArlRS TCS as a positive regulator of scrA expression. Collectively, our results show that ScrA is an activator of the SaeRS system and suggests that ScrA may act as an intermediary between the ArlRS and SaeRS systems.


Assuntos
Pequeno RNA não Traduzido , Infecções Estafilocócicas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Proteínas Quinases/metabolismo , Pequeno RNA não Traduzido/metabolismo , Staphylococcus aureus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
2.
mBio ; 12(6): e0280321, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724819

RESUMO

Small, noncoding RNAs (sRNAs) are being increasingly identified as important regulatory molecules in prokaryotes. Due to the prevalence of next-generation sequencing-based techniques, such as RNA sequencing (RNA-seq), there is potential for increased discovery of sRNAs within bacterial genomes; however, these elements are rarely included in annotation files. Consequently, expression values for sRNAs are omitted from most transcriptomic analyses, and mechanistic studies have lagged behind those of protein regulators in numerous bacteria. Two previous studies have identified sRNAs in the human pathogen group B Streptococcus (GBS). Here, we utilize the data from these studies to create updated genome annotation files for the model GBS strains NEM316 and COH1. Using the updated COH1 annotation file, we reanalyze publicly available GBS RNA-seq whole-transcriptome data from GenBank to monitor GBS sRNA expression under a variety of conditions and genetic backgrounds. This analysis generated expression values for 232 putative sRNAs that were overlooked in previous transcriptomic analyses in 21 unique comparisons. To demonstrate the utility of these data, we identify an sRNA that is upregulated during vaginal colonization and demonstrate that overexpression of this sRNA leads to increased bacterial invasion into host epithelial cells. Finally, to monitor RNA degradation, we perform a transcript stability assay to identify highly stable sRNAs and compare stability profiles of sRNA- and protein-coding genes. Collectively, these data provide a wealth of transcriptomic data for putative sRNAs in GBS and a platform for future mechanistic studies. IMPORTANCE In recent years, sRNAs have emerged as potent regulatory molecules in bacteria, including numerous streptococcal species, and contribute to diverse processes, including stress response, metabolism, housekeeping, and virulence regulation. Improvements in sequencing technologies and in silico analyses have facilitated identification of these regulatory molecules as well as improved attempts to determine the location of sRNA genes on the genome. However, despite these advancements, sRNAs are rarely included in genome annotation files. Consequently, these molecules are often omitted from transcriptomic data analyses and are commonly repeat identified across multiple studies. Updating current genomes to include sRNA genes is therefore critical for better understanding bacterial regulation.


Assuntos
RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Streptococcus agalactiae/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Humanos , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/química , Streptococcus agalactiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...