Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 192: 108608, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33991565

RESUMO

An impairment of long-term synaptic plasticity is considered as a peculiar endophenotype of distinct forms of dystonia, a common, disabling movement disorder. Among the few therapeutic options, broad-spectrum antimuscarinic drugs are utilized, aimed at counteracting abnormal striatal acetylcholine-mediated transmission, which plays a crucial role in dystonia pathophysiology. We previously demonstrated a complete loss of long-term synaptic depression (LTD) at corticostriatal synapses in rodent models of two distinct forms of isolated dystonia, resulting from mutations in the TOR1A (DYT1), and GNAL (DYT25) genes. In addition to anticholinergic agents, the aberrant excitability of striatal cholinergic cells can be modulated by group I metabotropic glutamate receptor subtypes (mGlu1 and 5). Here, we tested the efficacy of the negative allosteric modulator (NAM) of metabotropic glutamate 5 (mGlu) receptor, dipraglurant (ADX48621) on striatal LTD. We show that, whereas acute treatment failed to rescue LTD, chronic dipraglurant rescued this form of synaptic plasticity both in DYT1 mice and GNAL rats. Our analysis of the pharmacokinetic profile of dipraglurant revealed a relatively short half-life, which led us to uncover a peculiar time-course of recovery based on the timing from last dipraglurant injection. Indeed, striatal spiny projection neurons (SPNs) recorded within 2 h from last administration showed full expression of synaptic plasticity, whilst the extent of recovery progressively diminished when SPNs were recorded 4-6 h after treatment. Our findings suggest that distinct dystonia genes may share common signaling pathway dysfunction. More importantly, they indicate that dipraglurant might be a potential novel therapeutic agent for this disabling disorder.


Assuntos
Corpo Estriado/fisiologia , Distonia/fisiopatologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Imidazóis/farmacologia , Depressão Sináptica de Longo Prazo/fisiologia , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/fisiologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Corpo Estriado/efeitos dos fármacos , Distonia/tratamento farmacológico , Distonia/genética , Agonistas de Aminoácidos Excitatórios/farmacologia , Agonistas de Aminoácidos Excitatórios/uso terapêutico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Imidazóis/uso terapêutico , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Piridinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores
2.
J Neurosci Methods ; 339: 108728, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32289333

RESUMO

Although dystonia represents the third most common movement disorder, its pathophysiology remains still poorly understood. In the past two decades, multiple models have been generated, improving our knowledge on the molecular and cellular bases of this heterogeneous group of movement disorders. In this short survey, we will focus on recently generated novel models of DYT1 dystonia, the most common form of genetic, "isolated" dystonia. These models clearly indicate the existence of multiple signaling pathways affected by the protein mutation causative of DYT1 dystonia, torsinA, paving the way for potentially multiple, novel targets for pharmacological intervention.


Assuntos
Distonia , Distúrbios Distônicos , Transtornos dos Movimentos , Distonia/genética , Distúrbios Distônicos/genética , Humanos , Mutação/genética , Transdução de Sinais
3.
Neurobiol Dis ; 108: 128-139, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28823931

RESUMO

Striatal dysfunction is implicated in many movement disorders. However, the precise nature of defects often remains uncharacterized, which hinders therapy development. Here we examined striatal function in a mouse model of the incurable movement disorder, myoclonus dystonia, caused by SGCE mutations. Using RNAseq we found surprisingly normal gene expression, including normal levels of neuronal subclass markers to strongly suggest that striatal microcircuitry is spared by the disease insult. We then functionally characterized Sgce mutant medium spiny projection neurons (MSNs) and cholinergic interneurons (ChIs). This revealed normal intrinsic electrophysiological properties and normal responses to basic excitatory and inhibitory neurotransmission. Nevertheless, high-frequency stimulation in Sgce mutants failed to induce normal long-term depression (LTD) at corticostriatal glutamatergic synapses. We also found that pharmacological manipulation of MSNs by inhibiting adenosine 2A receptors (A2AR) restores LTD, again pointing to structurally intact striatal circuitry. The fact that Sgce loss specifically inhibits LTD implicates this neurophysiological defect in myoclonus dystonia, and emphasizes that neurophysiological changes can occur in the absence of broad striatal dysfunction. Further, the positive effect of A2AR antagonists indicates that this drug class be tested in DYT11/SGCE dystonia.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Corpo Estriado/efeitos dos fármacos , Distúrbios Distônicos/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Animais , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Distúrbios Distônicos/fisiopatologia , Feminino , Ácido Glutâmico/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Receptor A2A de Adenosina/metabolismo , Sarcoglicanas/genética , Sarcoglicanas/metabolismo , Técnicas de Cultura de Tecidos
4.
Neurobiol Dis ; 91: 21-36, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26916954

RESUMO

Heterozygous mutations in the PINK1 gene are considered a susceptibility factor to develop early-onset Parkinson's disease (PD), as supported by dopamine hypometabolism in asymptomatic mutation carriers and subtle alterations of dopamine-dependent striatal synaptic plasticity in heterozygous PINK1 knockout (PINK1(+/-)) mice. The aim of the present study was to investigate whether exposure to low-dose rotenone of heterozygous PINK1(+/-) mice, compared to their wild-type PINK1(+/+) littermates, could impact on dopamine-dependent striatal synaptic plasticity, in the absence of apparent structural alterations. Mice were exposed to a range of concentrations of rotenone (0.01-1mg/kg). Chronic treatment with concentrations of rotenone up to 0.8mg/kg did not cause manifest neuronal loss or changes in ATP levels both in the striatum or substantia nigra of PINK1(+/-) and PINK1(+/+) mice. Moreover, rotenone (up to 0.8mg/kg) treatment did not induce mislocalization of the mitochondrial membrane protein Tom20 and release of cytochrome c in PINK1(+/-) striata. Accordingly, basic electrophysiological properties of nigral dopaminergic and striatal medium spiny neurons (MSNs) were normal. Despite the lack of gross alterations in neuronal viability in chronically-treated PINK1(+/-), a complete loss of both long-term depression (LTD) and long-term potentiation (LTP) was recorded in MSNs from PINK1(+/-) mice treated with a low rotenone (0.1mg/kg) concentration. Even lower concentrations (0.01mg/kg) blocked LTP induction in heterozygous PINK1(+/-) MSNs compared to PINK1(+/+) mice. Of interest, chronic pretreatment with the antioxidants alpha-tocopherol and Trolox, a water-soluble analog of vitamin E and powerful antioxidant, rescued synaptic plasticity impairment, confirming that, at the doses we utilized, rotenone did not induce irreversible alterations. In this model, chronic exposure to low-doses of rotenone was not sufficient to alter mitochondrial integrity and ATP production, but profoundly impaired the expression of long-term plasticity at corticostriatal synapses in PINK1 heterozygous knockout mice, suggesting that disruption of synaptic plasticity may represent an early feature of a pre-manifesting state of the disease, and a potential tool to test novel neuroprotective agents.


Assuntos
Corpo Estriado/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Proteínas Quinases/genética , Rotenona/farmacologia , Substância Negra/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Corpo Estriado/metabolismo , Dopamina/metabolismo , Heterozigoto , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos Knockout , Plasticidade Neuronal/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Quinases/efeitos dos fármacos , Substância Negra/metabolismo , Sinapses/metabolismo
5.
Neuropharmacology ; 101: 460-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26498506

RESUMO

Recessive mutations in the PTEN-induced putative kinase 1 (PINK1) gene cause early-onset Parkinson's disease (PD). We investigated the interaction between endocannabinoid (eCB) and dopaminergic transmission at corticostriatal synapses in PINK1 deficient mice. Whole-cell patch-clamp and conventional recordings of striatal medium spiny neurons (MSNs) were made from slices of PINK1(-/-), heterozygous PINK1(+/-) mice and wild-type littermates (PINK1(+/+)). In PINK1(+/+) mice, CB1 receptor (CB1R) activation reduced spontaneous excitatory postsynaptic currents (sEPSCs). Likewise, CB1R agonists (ACEA, WIN55,212-3 and HU210) induced a dose-dependent reduction of cortically-evoked excitatory postsynaptic potential (eEPSP) amplitude. While CB1R agonists retained their inhibitory effect in heterozygous PINK1(+/-) mice, conversely, in PINK1(-/-) mice they failed to modulate sEPSC amplitude. Similarly, CB1R activation failed to reduce eEPSP amplitude in PINK1(-/-) mice. Parallel biochemical measurements revealed no significant difference in the levels of the two main eCBs, 2-arachidonoylglycerol (2-AG) and anandamide (AEA) in PINK1(-/-) striata. Similarly, no change was observed in the enzymatic activity of both fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), responsible for eCB hydrolysis. Instead, a significant reduction of binding ability of CB1R agonists was found in PINK1(-/-) mice. Notably, the CB1R-dependent inhibition of synaptic activity was restored either by amphetamine or after chronic treatment with the D2 dopamine receptor agonist quinpirole. Additionally, CB1R binding activity returned to control levels after chronic pretreatment with quinpirole. Consistent with the hypothesis of a close interplay with dopaminergic neurotransmission, our findings show a CB1R dysfunction at corticostriatal synapses in PINK1(-/-), but not in PINK1(+/-) mice, and provide a mechanistic link to the distinct plasticity deficits observed in both genotypes.


Assuntos
Córtex Cerebral/citologia , Corpo Estriado/citologia , Dopamina/metabolismo , Proteínas Quinases/deficiência , Receptor CB1 de Canabinoide/metabolismo , Sinapses/fisiologia , Animais , Benzoxazinas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Cicloexanóis/farmacocinética , Dopaminérgicos/farmacologia , Dronabinol/análogos & derivados , Dronabinol/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Transgênicos , Morfolinas/farmacologia , Naftalenos/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas Quinases/genética , Sinapses/efeitos dos fármacos , Fatores de Tempo , Trítio/farmacocinética
6.
Prog Neurobiol ; 127-128: 91-107, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25697043

RESUMO

Dystonia is a movement disorder of both genetic and non-genetic causes, which typically results in twisted posturing due to abnormal muscle contraction. Evidence from dystonia patients and animal models of dystonia indicate a crucial role for the striatal cholinergic system in the pathophysiology of dystonia. In this review, we focus on striatal circuitry and the centrality of the acetylcholine system in the function of the basal ganglia in the control of voluntary movement and ultimately clinical manifestation of movement disorders. We consider the impact of cholinergic interneurons (ChIs) on dopamine-acetylcholine interactions and examine new evidence for impairment of ChIs in dysfunction of the motor systems producing dystonic movements, particularly in animal models. We have observed paradoxical excitation of ChIs in the presence of dopamine D2 receptor agonists and impairment of striatal synaptic plasticity in a mouse model of DYT1 dystonia, which are improved by administration of recently developed M1 receptor antagonists. These findings have been confirmed across multiple animal models of DYT1 dystonia and may represent a common endophenotype by which to investigate dystonia induced by other types of genetic and non-genetic causes and to investigate the potential effectiveness of pharmacotherapeutics and other strategies to improve dystonia.


Assuntos
Acetilcolina/metabolismo , Corpo Estriado/fisiopatologia , Distúrbios Distônicos/fisiopatologia , Interneurônios/fisiologia , Animais , Corpo Estriado/anatomia & histologia , Humanos
7.
Neuropharmacology ; 85: 440-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24951854

RESUMO

Early onset torsion dystonia (DYT1) is an autosomal dominantly inherited disorder caused by deletion in TOR1A gene. Evidence suggests that TOR1A mutation produces dystonia through an aberrant neuronal signalling within the striatum, where D2 dopamine receptors (D2R) produce an abnormal excitatory response in cholinergic interneurons (ChIs) in different models of DYT1 dystonia. The excitability of ChIs may be modulated by group I metabotropic glutamate receptor subtypes (mGlu1 and 5). We performed electrophysiological and calcium imaging recordings from ChIs of both knock-in mice heterozygous for Δ-torsinA (Tor1a(+/Δgag) mice) and transgenic mice overexpressing human torsinA (hMT1). We demonstrate that the novel negative allosteric modulator (NAM) of metabotropic glutamate 5 (mGlu) receptor, dipraglurant (ADX48621) counteracts the abnormal membrane responses and calcium rise induced either by the D2R agonist quinpirole or by caged dopamine (NPEC-Dopamine) in both models. These inhibitory effects were mimicked by two other well-characterized mGlu5 receptor antagonists, SIB1757 and MPEP, but not by mGlu1 antagonism. D2R and mGlu5 post-receptor signalling may converge on PI3K/Akt pathway. Interestingly, we found that the abnormal D2R response was prevented by the selective PI3K inhibitor, LY294002, whereas PLC and PKC inhibitors were both ineffective. Currently, no satisfactory pharmacological treatment is available for DYT1 dystonia patients. Our data show that negative modulation of mGlu5 receptors may counteract abnormal D2R responses, normalizing cholinergic cell excitability, by modulating the PI3K/Akt post-receptor pathway, thereby representing a novel potential treatment of DYT1 dystonia.


Assuntos
Encéfalo/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Distúrbios Distônicos/tratamento farmacológico , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Encéfalo/fisiopatologia , Cálcio/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/fisiologia , Corpo Estriado/fisiologia , Modelos Animais de Doenças , Distúrbios Distônicos/fisiopatologia , Humanos , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Camundongos Transgênicos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Técnicas de Cultura de Tecidos
8.
Neurobiol Dis ; 65: 124-32, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24503369

RESUMO

DYT1 dystonia is a movement disorder caused by a deletion in the C-terminal of the protein torsinA. It is unclear how torsinA mutation might disrupt cellular processes encoding motor activity, and whether this impairment occurs in specific brain regions. Here, we report a selective impairment of corticostriatal synaptic plasticity in knock-in mice heterozygous for Δ-torsinA (Tor1a(+/Δgag) mice) as compared to controls (Tor1a(+/+) mice). In striatal spiny neurons from Tor1a(+/Δgag) mice, high-frequency stimulation failed to induce long-term depression (LTD), whereas long-term potentiation (LTP) exhibited increased amplitude. Of interest, blockade of D2 dopamine receptors (D2Rs) increased LTP in Tor1a(+/+) mice to a level comparable to that measured in Tor1a(+/Δgag) mice and normalized the levels of potentiation across mouse groups. A low-frequency stimulation (LFS) protocol was unable to depotentiate corticostriatal synapses in Tor1a(+/Δgag) mice. Muscarinic M1 acetylcholine receptor (mAChR) blockade rescued plasticity deficits. Additionally, we found an abnormal responsiveness of cholinergic interneurons to D2R activation, consisting in an excitatory response rather than the expected inhibition, further confirming an imbalance between dopaminergic and cholinergic signaling in the striatum. Conversely, synaptic activity and plasticity in the CA1 hippocampal region were unaltered in Tor1a(+/Δgag) mice. Importantly, the M1 mAChR-dependent enhancement of hippocampal LTP was unaffected in both genotypes. Similarly, both basic properties of dopaminergic nigral neurons and their responses to D2R activation were normal. These results provide evidence for a regional specificity of the electrophysiological abnormalities observed and demonstrate the reproducibility of such alterations in distinct models of DYT1 dystonia.


Assuntos
Encéfalo/patologia , Distonia/genética , Distonia/patologia , Chaperonas Moleculares/genética , Plasticidade Neuronal/genética , Sinapses/patologia , Animais , Modelos Animais de Doenças , Dopamina/farmacologia , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/genética , Antagonistas GABAérgicos/farmacologia , Regulação da Expressão Gênica/genética , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Antagonistas Muscarínicos/farmacologia , Mutação/genética , Neurônios/fisiologia , Picrotoxina/farmacologia , Pirenzepina/farmacologia , Sinapses/genética
9.
Neuropharmacology ; 75: 78-85, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23891638

RESUMO

Cholinergic interneurons (ChIs) of dorsal striatum play a key role in motor control and in behavioural learning. Neuropeptides regulate cholinergic transmission and mu opioid receptor (MOR) activation modulates striatal acetylcholine release. However, the mechanisms underlying this effect are yet uncharacterized. Here, we examined the electrophysiological responses of ChIs to the selective MOR agonist, DAMGO {[D-Ala2-MePhe4-Gly(ol)5] enkephalin}. We observed a robust, dose-dependent inhibition of spontaneous firing activity (0.06-3 µM) which was reversible upon drug washout and blocked by the selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) (1 µM). Voltage-clamp analysis of the reversal potential of the DAMGO effect did not provide univocal results, indicating the involvement of multiple membrane conductances. The MOR-dependent effect persisted in the presence of GABAA and ionotropic glutamate receptor antagonists, ruling out an indirect effect. Additionally, it depended upon G-protein activation, as it was prevented by intrapipette GDP-ß-S. Because D2 dopamine receptors (D2R) and MOR share a common post-receptor signalling pathway, occlusion experiments were performed with maximal doses of both D2R and MOR agonists. The D2R agonist quinpirole decreased spike discharge, which was further reduced by adding DAMGO. Then, D2R or MOR antagonists were used to challenge the response to the respective agonists, DAMGO or quinpirole. No cross-effect was observed, suggesting that the two receptors act independently. Our findings demonstrate a postsynaptic inhibitory modulation by MOR on ChIs excitability. Such opioidergic regulation of cholinergic transmission might contribute to shape information processing in basal ganglia circuits, and represent a potential target for pharmacological intervention.


Assuntos
Potenciais de Ação/fisiologia , Neurônios Colinérgicos/fisiologia , Corpo Estriado/citologia , Inibição Neural/fisiologia , Receptores Opioides mu/metabolismo , Potenciais de Ação/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Anestésicos Locais/farmacologia , Animais , Cloreto de Cádmio/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/efeitos dos fármacos , Quimpirol/farmacologia , Receptores Opioides mu/antagonistas & inibidores , Somatostatina/análogos & derivados , Somatostatina/farmacologia , Tetrodotoxina/farmacologia
10.
Neuroscience ; 211: 126-35, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21839811

RESUMO

In the recent past, the pathogenesis of Parkinson's disease (PD) has evolved from a neurodegenerative disorder considered entirely sporadic to a disease with an unequivocal genetic component. Indeed, different inherited forms of PD have been discovered and characterized, although the functional roles of the gene products identified are still under intense investigation. To gain a better understanding of the cellular and molecular pathogenic mechanisms of hereditary forms of PD, different animal models have been generated. Although most of the rodent models display neither obvious behavioral impairment nor evidence for neurodegeneration, remarkable abnormalities of dopamine-mediated neurotransmission and corticostriatal synaptic plasticity have been described, indicative of a fundamental distortion of network function within the basal ganglia. The picture emerging from a critical review of recent data on monogenic parkinsonisms suggests that mutations in PD genes might cause developmental rearrangements in the corticobasal ganglia circuitry, compensating the dopaminergic dysfunction observed both in mice and humans, in order to maintain proper motor function.


Assuntos
Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/fisiologia , Plasticidade Neuronal/fisiologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/fisiopatologia , Transmissão Sináptica/genética , Animais , Homeostase/genética , Homeostase/fisiologia , Modelos Neurológicos , Vias Neurais/fisiopatologia , Plasticidade Neuronal/genética , Transmissão Sináptica/fisiologia
11.
Neuroscience ; 177: 240-51, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21195752

RESUMO

In the present work we analyzed the profile of high voltage-activated (HVA) calcium (Ca2+) currents in freshly isolated striatal medium spiny neurons (MSNs) from rodent models of both idiopathic and familial forms of Parkinson's disease (PD). MSNs were recorded from reserpine-treated and 6-hydroxydopamine (6-OHDA)-lesioned rats, and from DJ-1 and PINK1 (PTEN induced kinase 1) knockout (-/-) mice. Our analysis showed no significant changes in total HVA Ca2+ current. However, we recorded a net increase in the L-type fraction of HVA Ca2+ current in dopamine-depleted rats, and of both N- and P-type components in DJ-1-/- mice, whereas no significant change in Ca2+ current profile was observed in PINK1-/- mice. Dopamine modulates HVA Ca2+ channels in MSNs, thus we also analyzed the effect of D1 and D2 receptor activation. The effect of the D1 receptor agonist SKF 83822 on Ca2+ current was not significantly different among MSNs from control animals or PD models. However, in both dopamine-depleted rats and DJ-1-/- mice the D2 receptor agonist quinpirole inhibited a greater fraction of HVA Ca2+ current than in the respective controls. Conversely, in MSNs from PINK1-/- mice we did not observe alterations in the effect of D2 receptor activation. Additionally, in both reserpine-treated and 6-OHDA-lesioned rats, the effect of quinpirole was occluded by the selective L-type Ca2+ channel blocker nifedipine, while in DJ-1-/- mice it was mostly occluded by ω-conotoxin GVIA, blocker of N-type channels. These results demonstrate that both dopamine depletion and DJ-1 deletion induce a rearrangement in the HVA Ca2+ channel profile, specifically involving those channels that are selectively modulated by D2 receptors.


Assuntos
Canais de Cálcio/metabolismo , Dopamina/fisiologia , Neostriado/metabolismo , Neurônios/metabolismo , Proteínas Oncogênicas/genética , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Receptores de Dopamina D2/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Modelos Animais de Doenças , Dopamina/deficiência , Dopamina/genética , Masculino , Camundongos , Camundongos Knockout , Neostriado/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Proteínas Oncogênicas/deficiência , Técnicas de Cultura de Órgãos , Transtornos Parkinsonianos/genética , Peroxirredoxinas , Proteína Desglicase DJ-1 , Ratos , Ratos Wistar , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/deficiência
12.
Exp Neurol ; 215(2): 388-96, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19071114

RESUMO

An altered glutamatergic input at corticostriatal synapses has been shown in experimental models of Parkinson's disease (PD). In the present work, we analyzed the membrane and synaptic responses of striatal neurons to metabotropic glutamate (mGlu) receptor activation in two different mouse models of inherited PD, linked to mutations in PINK1 or Parkin genes. Both in PINK1 and Parkin knockout ((-/-)) mice, activation of group I mGlu receptors by 3,5-DHPG caused a membrane depolarization coupled to an increase in firing frequency in striatal cholinergic interneurons that was comparable to the response observed in the respective wild-type (WT) interneurons. The sensitivity to group II and III mGlu receptors was tested on cortically-evoked excitatory postsynaptic potentials (EPSPs) recorded from medium spiny neurons (MSNs). Both LY379268 and L-AP4, agonists for group II and III, respectively, had no effect on intrinsic membrane properties, but dose-dependently reduced the amplitude of corticostriatal EPSPs. However, both in PINK1(-/-) and Parkin(-/-) mice, LY379268, but not L-AP4, exhibited a greater potency as compared to WT in depressing EPSP amplitude. Accordingly, the dose-response curve for the response to LY379268 in both knockout mice was shifted leftward. Moreover, consistent with a presynaptic site of action, both LY379268 and L-AP4 increased the paired-pulse ratio either in PINK1(-/-) and Parkin(-/-) or in WT mice. Acute pretreatment with L-dopa did not rescue the enhanced sensitivity to LY379268. Together, these results suggest that the selective increase in sensitivity of striatal group II mGlu receptors represents an adaptive change in mice in which an altered dopamine metabolism has been documented.


Assuntos
Córtex Cerebral/citologia , Corpo Estriado/citologia , Neurônios/fisiologia , Proteínas Quinases/deficiência , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/genética , Ubiquitina-Proteína Ligases/deficiência , Aminoácidos/farmacologia , Animais , Fenômenos Biofísicos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Dopaminérgicos/farmacologia , Estimulação Elétrica/métodos , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Técnicas In Vitro , Levodopa/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Propionatos/farmacologia , Sinapses/efeitos dos fármacos
13.
Neuropharmacology ; 55(4): 392-5, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18602651

RESUMO

In the recent past, evidence accumulated in favour of a central role of group I metabotropic glutamate (mGlu) receptors, mGlu1 and mGlu5, in the modulation of cell excitability both of striatal medium spiny projection neurons (MSNs) and interneuronal population. Electrophysiological and pharmacological studies have clearly shown that activation of mGlu1 and mGlu5 receptors exerts distinct actions, depending on the neuronal subtype involved. MGlu5 receptor activation mediates the potentiation of NMDA responses in MSNs, and underlies the retrograde inhibitory signaling by endocannabinoids at corticostriatal synapses. Conversely, both group I mGlu receptors are involved in long-term synaptic plasticity of MSNs. Likewise, either mGlu1 or mGlu5 receptors are engaged in shaping the excitability of large cholinergic interneurons, playing different roles in the membrane responses. Differently, although GABAergic parvalbumin-positive, fast-spiking interneurons have been shown to express both group I receptors, only mGlu1 receptor seems to mediate membrane and synaptic responses. This review provides a brief survey of the cellular and synaptic actions of group I mGlu receptors, and discusses the potential relevance of these findings in neostriatal function and motor control.


Assuntos
Corpo Estriado/metabolismo , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Humanos
14.
Neuroscience ; 152(2): 469-76, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18262727

RESUMO

By means of whole-cell patch-clamp recordings, we characterized the developmental profile of high-voltage-activated (HVA) calcium (Ca(2+)) channel subtypes in distinct neuronal populations of mouse striatum. Acutely dissociated medium spiny neurons (MSNs) and cholinergic interneurons (ChIs) were recorded from mice at five developmental stages: postnatal-days (PD) 14, 23, 40, 150 and 270. During ageing, total HVA Ca(2+) current recorded from both MSNs and ChIs was unchanged. However, the pharmacological analysis of the differential contribution of HVA Ca(2+) channel subtypes showed a significant rearrangement of each component. In both neuronal subtypes, a large fraction of the total HVA current recorded from PD14 mice was inhibited by the L-type HVA channel blocker nifedipine. This dihydropyridine-sensitive component accounted for nearly 50%, in MSNs, and 35%, in ChIs, of total current at PD14, but its contribution was down-regulated up to 20-25% at 9 months. Likewise, the N-type, omega-conotoxin GVIA-sensitive component decreased from 35% to 40% to about 25% in MSNs and 15% in ChIs. The P-type, omega-agatoxin-sensitive fraction did not show significant changes in both neuronal subtypes, whereas the Q-type, omega-conotoxin MVIIC-sensitive channels did show a significant up-regulation at 9 months. As compared with striatal neurons, we recorded pyramidal neurons dissociated from cortical layers IV-V and found no significant developmental change in the different components of HVA Ca(2+) currents. In conclusion, our data demonstrate a functional reconfiguration of HVA Ca(2+) channels in striatal but not cortical pyramidal neurons during mouse development. Such changes might have profound implications for physiological and pathophysiological processes of the striatum.


Assuntos
Envelhecimento/fisiologia , Canais de Cálcio/fisiologia , Corpo Estriado/citologia , Neurônios/classificação , Neurônios/fisiologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/classificação , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/efeitos da radiação , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp/métodos
15.
Amino Acids ; 32(2): 189-95, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16715415

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopamine (DA)-containing neurons in the substantia nigra pars compacta (SNc). The symptoms are resting tremor, slowness of movement, rigidity and postural instability. Evidence that an imbalance between dopaminergic and cholinergic transmission takes place within the striatum led to the utilization of DA precursors, DA receptor agonists and anticholinergic drugs in the symptomatic therapy of PD. However, upon disease progression the therapy becomes less effective and debilitating effects such as dyskinesias and motor fluctuations appear. Hence, the need for the development of alternative therapeutic strategies has emerged. Several observations in different experimental models of PD suggest that blockade of excitatory amino acid transmission exerts antiparkinsonian effects. In particular, recent studies have focused on metabotropic glutamate receptors (mGluRs). Drugs acting on group I and II mGluRs have indeed been proven useful in ameliorating the parkinsonian symptoms in animal models of PD and therefore might represent promising therapeutic targets. This beneficial effect could be due to the reduction of both glutamatergic and cholinergic transmission. A novel target for drugs acting on mGluRs in PD therapy might be represented by striatal cholinergic interneurons. Indeed, the activation of mGluR2, highly expressed on this cell type, is able to reduce calcium-dependent plateau potentials by interfering with somato-dendritic N-type calcium channel activity, in turn reducing ACh release in the striatum. Similarly, the blockade of both group I mGluR subtypes reduces cholinergic interneuron excitability, and decreases striatal ACh release. Thus, targeting mGluRs located onto cholinergic interneurons might result in a beneficial pharmacological effect in the parkinsonian state.


Assuntos
Corpo Estriado/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Canais de Cálcio/metabolismo , Dopamina/metabolismo , Eletrofisiologia , Regulação da Expressão Gênica , Humanos , Modelos Biológicos , Neurônios/metabolismo , Ratos , Receptores Colinérgicos/metabolismo , Receptores de Glutamato/metabolismo , Substância Negra/metabolismo
16.
Neurobiol Dis ; 24(2): 318-25, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16934985

RESUMO

Early-onset torsion dystonia (DYT1) is an autosomal dominant disease caused by a deletion in the gene encoding the protein torsinA. Recently, a transgenic mouse model of DYT1 has been described, expressing either the human wild-type torsinA (hWT) or mutant torsinA (hMT). We recorded the activity of striatal cholinergic interneurons of hWT, hMT, and control mice. In slice preparations, no significant differences were observed in resting membrane potential (RMP), firing activity, action potential duration or Ih current. Quinpirole, a D2-like dopamine receptor agonist, did not produce detectable effects on RMP of cholinergic interneurons in control mice and hWT mice, but in the hMT mice caused membrane depolarization and an increase in the firing rate. D2 receptor activation inhibits N-type high-voltage-activated calcium currents. We found that, in isolated interneurons from hMT mice, the quinpirole-mediated inhibition of N-type currents was significantly larger than in hWT and controls. Moreover, the N-type component was significantly over-represented in hMT mice. The altered sensitivity of N-type channels in hMT mice could account for the paradoxical excitatory effect of D2 stimulation. Our data support the existence of an imbalance between striatal dopaminergic and cholinergic signaling in DYT1 dystonia.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Corpo Estriado/metabolismo , Distonia Muscular Deformante/metabolismo , Interneurônios/metabolismo , Chaperonas Moleculares/genética , Receptores de Dopamina D2/metabolismo , Acetilcolina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Distonia Muscular Deformante/genética , Distonia Muscular Deformante/fisiopatologia , Humanos , Interneurônios/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/metabolismo , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Receptores de Dopamina D2/agonistas
17.
Curr Neuropharmacol ; 4(1): 69-75, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18615133

RESUMO

Current knowledge of the pathogenesis of basal ganglia disorders, such as Huntington's disease (HD) and Parkinson's disease (PD) appoints a central role to a dysfunction in mitochondrial metabolism. The development of animal models, based upon the use of mitochondrial toxins has been successfully introduced to reproduce human disease, leading to important acquisitions. Most notably, experimental evidence supports the existence, within basal ganglia, of a peculiar regional vulnerability to distinct mitochondrial toxins. MPTP and rotenone, both selective inhibitors of mitochondrial complex I have been extensively used to mimic PD. Accordingly, in human PD, a specific dysfunction of complex I activity was found in vulnerable dopaminergic neurons of the substantia nigra. Conversely, in HD a selective impairment of mitochondrial succinate dehydrogenase, key enzyme in complex II activity was found in medium spiny neurons of the caudate-putamen. The relevance of such finding is further demonstrated by the evidence that toxins able to primarily target mitochondrial complex II, such as malonic acid and 3-nitropropionic acid (3-NP), strikingly reproduce the main phenotypic and pathological features of HD.Despite the advances obtained from these experimental models, a deeper understanding of the molecular and cellular mechanisms underlying such neuronal vulnerability is lacking.The present review provides a brief survey of currently utilized animal models of mitochondrial intoxication, in attempt to address the cellular mechanisms triggered by energy metabolism failure and to identify potential therapeutic targets.

18.
Neuropharmacology ; 49 Suppl 1: 104-13, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16005029

RESUMO

Within basal ganglia, group I metabotropic glutamate receptor subtypes (mGluR1 and 5) frequently co-localize in the same neuron. However, little is known about how these receptors functionally interact. We addressed this issue by means of electrophysiological recordings of striatal cholinergic interneurons, a neuronal subtype that co-express both group I mGluRs. The group I non-selective agonist 3,5-DHPG induced a membrane depolarization/inward current that was prevented by co-application of LY 367385, a selective mGluR1 antagonist, and SIB 1757 or MPEP, blockers of mGluR5 subtype. The reversal potential for the response to 3,5-DHPG was close to the equilibrium potential for potassium channels. Repeated bath or focal applications of 3,5-DHPG induced a progressive decline in the amplitude of the membrane depolarization, suggesting that group I mGluRs undergo receptor desensitization. Interestingly, in the presence of the mGluR5 blocker, SIB 1757, this event was not observed, whereas it occurred in LY 367385. PKC blockers chelerythrine and calphostin C mimicked the inhibitory effect of SIB 1757. In a subset of interneurons, in MPEP or SIB 1757, 3,5-DHPG induced a 0.5-1 Hz oscillatory response, that was prevented by L-type Ca2+ channel blockers, and by the tyrosine kinase inhibitors genistein and lavendustin. Together, these data suggest that mGluR5 modulates mGluR1 activity to shape cell excitability.


Assuntos
Acetilcolina/metabolismo , Corpo Estriado/citologia , Interneurônios/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Anestésicos Locais/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Nimodipina/farmacologia , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5 , Tetrodotoxina/farmacologia
19.
Exp Neurol ; 185(1): 169-81, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14697328

RESUMO

Mitochondrial metabolism impairment has been implicated in the pathogenesis of several neurodegenerative disorders. In the present work, we combined electrophysiological recordings and microfluorometric measurements from cholinergic interneurons obtained from a rat neostriatal slice preparation. Acute application of the mitochondrial complex I inhibitor rotenone produced an early membrane hyperpolarization coupled to a fall in input resistance, followed by a late depolarizing response. Current-voltage relationship showed a reversal potential of -80 +/- 3 mV, suggesting the involvement of a potassium (K+) current. Simultaneous measurement of intracellular sodium [Na+]i or calcium [Ca2+]i concentrations revealed a striking correlation between [Na+]i elevation and the early membrane hyperpolarization, whereas a significant [Ca2+]i rise matched the depolarizing phase. Interestingly, ion and membrane potential changes were mimicked by ouabain, inhibitor of the Na+-K+ATPase, and were insensitive to tetrodotoxin (TTX) or to a combination of glutamate receptor antagonists. The rotenone effects were partially reduced by blockers of ATP-sensitive K+ channels, glibenclamide and tolbutamide, and largely attenuated by a low Na+-containing solution. Morphological analysis of the rotenone effects on striatal slices showed a significant decrease in the number of choline acetyltransferase (ChAT) immunoreactive cells. These results suggest that rotenone rapidly disrupts the ATP content, leading to a decreased Na+-K+ATPase function and, therefore, to [Na+]i overload. In turn, the hyperpolarizing response might be generated both by the opening of ATP-sensitive K+ channels and by Na+-activated K+ conductances. The increase in [Ca2+]i occurs lately and does not seem to influence the early events.


Assuntos
Corpo Estriado/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Praguicidas/toxicidade , Rotenona/toxicidade , Animais , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Colina O-Acetiltransferase/metabolismo , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Interneurônios/citologia , Interneurônios/fisiologia , Transporte de Íons/efeitos dos fármacos , Masculino , Potenciais da Membrana/fisiologia , Microscopia de Vídeo , Técnicas de Patch-Clamp , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Wistar , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo
20.
J Neurosci ; 23(12): 5272-82, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12832552

RESUMO

The role of noradrenergic neurotransmission was analyzed in striatal cholinergic interneurons. Conventional intracellular and whole-cell patch-clamp recordings were made of cholinergic interneurons in rat brain slice preparations. Bath-applied noradrenaline (NA) (1-300 microm) dose-dependently induced both an increase in the spontaneous firing activity and a membrane depolarization of the recorded cells. In voltage-clamped neurons, an inward current was induced by NA. This effect was not prevented by alpha-adrenoceptor antagonists, whereas it was mimicked by the beta-adrenoceptor agonist isoproterenol and blocked by the beta1 antagonists propranolol and betaxolol. Interestingly, forskolin, activator of adenylate cyclase, mimicked and occluded the membrane depolarization obtained at saturating doses of both dopamine and NA. Accordingly, SQ22,536, a selective adenylate cyclase inhibitor, reduced the response to NA. Analysis of the reversal potential of the NA-induced current did not provide homogeneous results, indicating the involvement of multiple membrane conductances. Because cAMP is known to modulate Ih, the effects of ZD7288, a selective inhibitor of Ih current, were examined on the NA-induced membrane depolarization/inward current. ZD7288 mostly reduced the response to NA. However, both KT-5720 and H-89, selective protein kinase A (PKA) blockers, failed to prevent the excitatory action of NA. Likewise, calphostin C, antagonist of PKC, genistein, inhibitor of tyrosine kinase, and 8-Bromo-cGMP, blocker of PKG, did not affect the response to NA. Finally, double-labeling experiments combining beta1-adrenoceptor and choline acetyltransferase immunocytochemistry by means of confocal microscopy revealed a strong beta1-adrenoceptor labeling on cholinergic interneurons. We conclude that NA depolarizes striatal cholinergic interneurons via beta1-adrenoceptor activation, through a cAMP-dependent but PKA-independent mechanism.


Assuntos
Corpo Estriado/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Interneurônios/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Adenilil Ciclases/metabolismo , Animais , Colina O-Acetiltransferase/metabolismo , Fibras Colinérgicas/efeitos dos fármacos , Fibras Colinérgicas/fisiologia , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Dopamina beta-Hidroxilase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Imuno-Histoquímica , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Masculino , Norepinefrina/farmacologia , Norepinefrina/fisiologia , Técnicas de Patch-Clamp , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Receptores Adrenérgicos beta 1/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...