Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38399704

RESUMO

The administration of Bacilli to dairy cows exerts beneficial effects on dry matter intake, lactation performance, and milk composition, but the rationale behind their efficacy is still poorly understood. In this work, we sought to establish whether cellulases and xylanases, among the enzymes secreted by B. subtilis, are involved in the positive effect exerted by Bacilli on ruminal performance. We took advantage of two isogenic B. subtilis strains, only differing in the secretion levels of those two enzymes. A multi-factorial study was conducted in which eight feed ingredients were treated in vitro, using ruminal fluid from cannulated cows, with cultures of the two strains conveniently grown in a growth medium based on inexpensive waste. Feed degradability and gas production were assessed. Fiber degradability was 10% higher (p < 0.001) in feeds treated with the enzyme-overexpressing strain than in the untreated control, while the non-overexpressing strain provided a 5% increase. The benefit of the fibrolytic enzymes was maximal for maize silage, the most recalcitrant feed. Gas production also correlated with the amount of enzymes applied (p < 0.05). Our results revealed that B. subtilis cellulases and xylanases effectively contribute to improving forage quality, justifying the use of Bacilli as direct-fed microbials to increase animal productivity.

2.
Plants (Basel) ; 11(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35336698

RESUMO

The market for nutraceutical molecules is growing at an impressive pace in all Western countries. A convenient source of bioactive compounds is found in vegetable waste products, and their re-use for the recovery of healthy biomolecules would increase the sustainability of the food production system. However, safe, cheap, and sustainable technologies should be applied for the recovery of these beneficial molecules, avoiding the use of toxic organic solvents or expensive equipment. The soil bacterium Bacillus subtilis is naturally endowed with several enzymes targeting complex vegetable polymers. In this work, a raw bacterial culture supernatant was used to assist in the extraction of bioactives using isothermal pressurization cycles. Besides a wild-type Bacillus subtilis strain, a new strain showing increased secretion of cellulases and xylanases, pivotal enzymes for the digestion of the plant cell wall, was also used. Results indicate that the recovery of compounds correlates with the amount of cellulolytic enzymes applied, demonstrating that the pretreatment with non-purified culture broth effectively promotes the release of bioactives from the vegetable matrix. Therefore, this approach is a valid and sustainable procedure for the recovery of bioactive compounds from food waste.

3.
Res Microbiol ; 172(6): 103877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34487843

RESUMO

The two-component system DegSU of Bacillus subtilis controls more than one hundred genes involved in several different cellular behaviours. Over the last four decades, the degU32Hy allele, supposedly encoding a constitutively active mutant of the response regulator DegU, was exploited to define the impact of this system on cell physiology. Those studies concluded that phosphorylated DegU (DegU∼P) induced degradative enzyme expression while repressing flagellar motility and competence. Recent experiments, however, demonstrated that flagella expression is enhanced by DegU∼P if SwrA, a protein only encoded by wild strains, is present. Yet, to promote motility, SwrA must interact with DegU∼P produced by a wild-type degU allele, as it cannot correctly cooperate with the mutant DegU32Hy protein. In this work, the impact of DegSU was reanalysed in the presence or absence of SwrA employing a DegS kinase mutant, degS200Hy, to force the activation of the TCS. Our results demonstrate that the role of SwrA in B. subtilis physiology is wider than expected and affects several other DegSU targets. SwrA reduces subtilisin, cellulases and xylanases production while, besides motility, it also positively modulates competence for DNA uptake, remarkably relieving the inhibition caused by DegU∼P alone and restoring transformability in degS200Hy strains.


Assuntos
Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Proteínas de Bactérias/genética , Celulase/metabolismo , Genes Bacterianos , Histidina Quinase/genética , Movimento , Mutação , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/biossíntese , Transdução de Sinais , Subtilisina/genética , Subtilisina/metabolismo , Transformação Bacteriana , Xilosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...