Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 31(5): 42, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350617

RESUMO

This work evaluates the effects of laser surface modification on Mg-Zn-Gd-Nd alloy which is a potential biodegradable material for temporary bone implant applications. The laser surface melted (LSM) samples were investigated for microstructure, wettability, surface hardness and in vitro degradation. The microstructural study was carried out using scanning and transmission electron microscopes (SEM, TEM) and the phases present were analyzed using X-ray diffraction. The in vitro degradation behaviour was assessed in hank's balanced salt solution (HBSS) by immersion corrosion technique and the effect of LSM process parameters on the wettability was analyzed through contact angle measurements. The microstructural examination showed remarkable grain refinement as well as uniform redistribution of intermetallic phases throughout the matrix after LSM. These microstructural changes increased the hardness of LSM samples with an increase in energy density. The wetting behaviour of processed samples showed hydrophilic nature when processed at lower (12.5 and 17.5 J/mm2) and intermediate energy density (22.5 and 25 J/mm2), which can potentially improve cell-materials interaction. The corrosion rate of as cast Mg-Zn-Gd-Nd alloy decreased by ~83% due to LSM.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Gadolínio/química , Compostos de Magnésio/química , Teste de Materiais/métodos , Neodímio/química , Compostos de Zinco/química , Lasers , Próteses e Implantes , Propriedades de Superfície
2.
J Mech Behav Biomed Mater ; 108: 103830, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32469724

RESUMO

Bioactive glass (BAG) is a well-known biomaterial that can form a strong bond with hard and soft tissues and can also aid in bone regeneration. In this study, BAG is added to a polymer to induce bioactivity and to realize fused filament fabrication (FFF) based printing of polymer composites for potential orthopaedic implant applications. BAG (5, 10, and 20 wt%) is melt compounded with high density polyethylene (HDPE) and subsequently extruded into feedstock filament for FFF-printing. Tensile tests on developed filaments reveal that they are stiff enough to resist forces exerted during the printing process. Micrography of printed HDPE/BAG reveals perfect diffusion of raster interface indicating proper selection of printing parameters. Micrography of freeze fractured prints shows the homogeneous distribution and good dispersion of filler across the matrix. The tensile, flexural, and compressive modulus of FFF-printed HDPE/BAG parts increases with filler addition. BAG addition to the HDPE matrix enhances flexural and compressive strength. The tensile and flexural behaviour of FFF-prints is comparable to injection molded counterparts. Property maps exhibit the merits of present study over the existing literature pertaining to desired bone properties and polymer composites used in biomedical applications. It is envisioned that the development of HDPE/BAG composites for FFF-printing can lead to possible orthopaedic implants and scaffolds to mimic the bone properties in customised anatomical sites or injuries.


Assuntos
Vidro , Polietileno , Materiais Biocompatíveis , Osso e Ossos , Força Compressiva
3.
Mater Sci Eng C Mater Biol Appl ; 57: 309-13, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26354269

RESUMO

Laser Engineered Net Shaping (LENS™), a commercially available additive manufacturing technology, has been used to fabricate dense equiatomic NiTi alloy components. The primary aim of this work is to study the effect of laser power and scan speed on microstructure, phase constituents, hardness and corrosion behavior of laser processed NiTi alloy. The results showed retention of large amount of high-temperature austenite phase at room temperature due to high cooling rates associated with laser processing. The high amount of austenite in these samples increased the hardness. The grain size and corrosion resistance were found to increase with laser power. The surface energy of NiTi alloy, calculated using contact angles, decreased from 61 mN/m to 56 mN/m with increase in laser energy density from 20 J/mm(2) to 80 J/mm(2). The decrease in surface energy shifted the corrosion potentials to nobler direction and decreased the corrosion current. Under present experimental conditions the laser power found to have strong influence on microstructure, phase constituents and corrosion resistance of NiTi alloy.


Assuntos
Ligas/química , Ligas/efeitos da radiação , Lasers , Níquel/química , Níquel/efeitos da radiação , Titânio/química , Titânio/efeitos da radiação , Corrosão , Relação Dose-Resposta à Radiação , Doses de Radiação , Propriedades de Superfície/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA