Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prev Vet Med ; 123: 71-89, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26708798

RESUMO

Between 2006 and 2009 the largest human Q fever epidemic ever described occurred in the Netherlands. The source of infection was traced back to dairy goat herds with abortion problems due to Q fever. The first aim of control measures taken in these herds was the reduction of human exposure. To analyze Q fever dynamics in goat herds and to study the effect of control measures, a within-herd model of Coxiella burnetii transmission in dairy goat herds was developed. With this individual-based stochastic model we evaluated six control strategies and three herd management styles and studied which strategy leads to a lower Q fever prevalence and/or to disease extinction in a goat herd. Parameter values were based on literature and on experimental work. The model could not be validated with independent data. The results of the epidemiological model were: (1) Vaccination is effective in quickly reducing the prevalence in a dairy goat herd. (2) When taking into account the average time to extinction of the infection and the infection pressure in a goat herd, the most effective control strategy is preventive yearly vaccination, followed by the reactive strategies to vaccinate after an abortion storm or after testing BTM (bulk tank milk) positive. (3) As C. burnetii in dried dust may affect public health, an alternative ranking method is based on the cumulative amount of C. burnetii emitted into the environment (from disease introduction until extinction). Using this criterion, the same control strategies are effective as when based on time to extinction and infection pressure (see 2). (4) As the bulk of pathogen excretion occurs during partus and abortion, culling of pregnant animals during an abortion storm leads to a fast reduction of the amount of C. burnetii emitted into the environment. However, emission is not entirely prevented and Q fever will not be eradicated in the herd by this measure. (5) A search & destroy (i.e. test and cull) method by PCR of individual milk samples with a detection probability of 50% of detecting and culling infected goats - that excrete C. burnetii intermittently - will not result in eradication of Q fever in the herd. This control strategy was the least effective of the six evaluated strategies. Subject to model limitations, our results indicate that only vaccination is capable of preventing and controlling Q fever outbreaks in dairy goat farms. Thus, preventive vaccination should be considered as an ongoing control measure.


Assuntos
Coxiella burnetii/fisiologia , Doenças das Cabras/prevenção & controle , Doenças das Cabras/transmissão , Modelos Teóricos , Febre Q/veterinária , Vacinação/veterinária , Animais , Indústria de Laticínios , Feminino , Cabras , Países Baixos , Febre Q/prevenção & controle , Febre Q/transmissão
2.
Prev Vet Med ; 121(1-2): 115-22, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26164531

RESUMO

This paper presents an economic analysis of Q fever control strategies in dairy goat herds in The Netherlands. Evaluated control strategies involved vaccination strategies (being either preventive or reactive) and reactive non-vaccination strategies (i.e., culling or breeding prohibition). Reactive strategies were initiated after PCR positive bulk tank milk or after an abortion storm (abortion percentage in the herd of 5% or more). Preventive vaccination eradicates Q fever in a herd on average within 2 and 7 years (depending on breeding style and vaccination strategy). Economic outcomes reveal that preventive vaccination is always the preferred Q fever control strategy on infected farms and this even holds for a partial analysis if only on-farm costs and benefits are accounted for and human health costs are ignored. Averted human health costs depend to a large extend on the number of infected human cases per infected farm or animal. Much is yet unknown with respect to goat-human transmission rates. When the pathogen is absent in both livestock and farm environment then the "freedom of Q fever disease" is achieved. This would enable a return to non-vaccinated herds but more insight is required with respect to the mechanisms and probability of re-infection.


Assuntos
Fazendeiros , Doenças das Cabras/economia , Nível de Saúde , Febre Q/veterinária , Criação de Animais Domésticos/economia , Animais , Doenças das Cabras/prevenção & controle , Cabras , Humanos , Modelos Econômicos , Países Baixos , Febre Q/economia , Febre Q/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...