Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 9396, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931703

RESUMO

The aberrant expression of microRNAs (miRs) has been linked to several human diseases. A promising approach for targeting these anomalies is the use of small-molecule inhibitors of miR biogenesis. These inhibitors have the potential to (i) dissect miR mechanisms of action, (ii) discover new drug targets, and (iii) function as new therapeutic agents. Here, we designed Förster resonance energy transfer (FRET)-labeled oligoribonucleotides of the precursor of the oncogenic miR-21 (pre-miR-21) and used them together with a set of aminoglycosides to develop an interbase-FRET assay to detect ligand binding to pre-miRs. Our interbase-FRET assay accurately reports structural changes of the RNA oligonucleotide induced by ligand binding. We demonstrate its application in a rapid, qualitative drug candidate screen by assessing the relative binding affinity between 12 aminoglycoside antibiotics and pre-miR-21. Surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) were used to validate our new FRET method, and the accuracy of our FRET assay was shown to be similar to the established techniques. With its advantages over SPR and ITC owing to its high sensitivity, small sample size, straightforward technique and the possibility for high-throughput expansion, we envision that our solution-based method can be applied in pre-miRNA-target binding studies.


Assuntos
Aminoglicosídeos/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , MicroRNAs/análise , MicroRNAs/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Humanos , Cinética , MicroRNAs/química , Ligação Proteica
2.
Nucleic Acids Res ; 48(14): 7640-7652, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32558908

RESUMO

With the central role of nucleic acids there is a need for development of fluorophores that facilitate the visualization of processes involving nucleic acids without perturbing their natural properties and behaviour. Here, we incorporate a new analogue of adenine, 2CNqA, into both DNA and RNA, and evaluate its nucleobase-mimicking and internal fluorophore capacities. We find that 2CNqA displays excellent photophysical properties in both nucleic acids, is highly specific for thymine/uracil, and maintains and slightly stabilises the canonical conformations of DNA and RNA duplexes. Moreover, the 2CNqA fluorophore has a quantum yield in single-stranded and duplex DNA ranging from 10% to 44% and 22% to 32%, respectively, and a slightly lower one (average 12%) inside duplex RNA. In combination with a comparatively strong molar absorptivity for this class of compounds, the resulting brightness of 2CNqA inside double-stranded DNA is the highest reported for a fluorescent base analogue. The high, relatively sequence-independent quantum yield in duplexes makes 2CNqA promising as a nucleic acid label and as an interbase Förster resonance energy transfer (FRET) donor. Finally, we report its excellent spectral overlap with the interbase FRET acceptors qAnitro and tCnitro, and demonstrate that these FRET pairs enable conformation studies of DNA and RNA.


Assuntos
DNA/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , RNA de Cadeia Dupla/química , Pareamento de Bases , DNA de Cadeia Simples/química , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/química , Oligorribonucleotídeos/síntese química , Oligorribonucleotídeos/química
3.
Chempluschem ; 85(2): 319-326, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045137

RESUMO

The fluorescent adenine analogue qAN4 was recently shown to possess promising photophysical properties, including a high brightness as a monomer. Here we report the synthesis of the phosphoramidite of qAN4 and its successful incorporation into DNA oligonucleotides using standard solid-phase synthesis. Circular dichroism and thermal melting studies indicate that the qAN4-modification has a stabilizing effect on the B-form of DNA. Moreover, qAN4 base-pairs selectively with thymine with mismatch penalties similar to those of mismatches of adenine. The low energy absorption band of qAN4 inside DNA has its peak around 358 nm and the emission in duplex DNA is partly quenched and blue-shifted (ca. 410 nm), compared to the monomeric form. The spectral properties of the fluorophore also show sensitivity to pH; a property that may find biological applications. Quantum yields in single-stranded DNA range from 1-29 % and in duplex DNA from 1-7 %. In combination with the absorptive properties, this gives an average brightness inside duplex DNA of 275 M-1 cm-1 , more than five times higher than the most used environment-sensitive fluorescent base analogue, 2-aminopurine. Finally, we show that qAN4 can be used to advantage as a donor for interbase FRET applications in combination with adenine analogue qAnitro as an acceptor.


Assuntos
Adenina/análogos & derivados , Adenina/análise , DNA/análise , Adenina/química , DNA/química , Estrutura Molecular
4.
Nucleic Acids Res ; 47(19): 9990-9997, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31544922

RESUMO

Interbase FRET can reveal highly detailed information about distance, orientation and dynamics in nucleic acids, complementing the existing structure and dynamics techniques. We here report the first RNA base analogue FRET pair, consisting of the donor tCO and the non-emissive acceptor tCnitro. The acceptor ribonucleoside is here synthesised and incorporated into RNA for the first time. This FRET pair accurately reports the average structure of A-form RNA, and its utility for probing RNA structural changes is demonstrated by monitoring the transition from A- to Z-form RNA. Finally, the measured FRET data were compared with theoretical FRET patterns obtained from two previously reported Z-RNA PDB structures, to shed new light on this elusive RNA conformation.


Assuntos
DNA/química , Transferência Ressonante de Energia de Fluorescência/métodos , Conformação de Ácido Nucleico , RNA/química , Pareamento de Bases , DNA/genética , Modelos Moleculares , RNA/isolamento & purificação
5.
Phys Chem Chem Phys ; 20(45): 28487-28498, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30412214

RESUMO

Fluorescent nucleobase analogues (FBAs) have many desirable features in comparison to extrinsic fluorescent labels, but they are yet to find application in ultrasensitive detection. Many of the disadvantages of FBAs arise from their short excitation wavelengths (often in the ultraviolet), making two-photon excitation a potentially attractive approach. Pentacyclic adenine (pA) is a recently developed FBA that has an exceptionally high two-photon brightness. We have studied the two-photon-excited fluorescence properties of pA and how they are affected by incorporation in DNA. We find that pA is more photostable under two-photon excitation than via resonant absorption. When incorporated in an oligonucleotide, pA has a high two-photon cross section and emission quantum yield, varying with sequence context, resulting in the highest reported brightness for such a probe. The use of a two-photon microscope with ultrafast excitation and pulse shaping has allowed the detection of pA-containing oligonucleotides in solution with a limit of detection of ∼5 molecules, demonstrating that practical single-molecule detection of FBAs is now within reach.

6.
Chem Sci ; 9(14): 3494-3502, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29780479

RESUMO

Emissive base analogs are powerful tools for probing nucleic acids at the molecular level. Herein we describe the development and thorough characterization of pentacyclic adenine (pA), a versatile base analog with exceptional fluorescence properties. When incorporated into DNA, pA pairs selectively with thymine without perturbing the B-form structure and is among the brightest nucleobase analogs reported so far. Together with the recently established base analog acceptor qAnitro, pA allows accurate distance and orientation determination via Förster resonance energy transfer (FRET) measurements. The high brightness at emission wavelengths above 400 nm also makes it suitable for fluorescence microscopy, as demonstrated by imaging of single liposomal constructs coated with cholesterol-anchored pA-dsDNA, using total internal reflection fluorescence microscopy. Finally, pA is also highly promising for two-photon excitation at 780 nm, with a brightness (5.3 GM) that is unprecedented for a base analog.

7.
Beilstein J Org Chem ; 14: 114-129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441135

RESUMO

Förster resonance energy transfer (FRET) between a donor nucleobase analogue and an acceptor nucleobase analogue, base-base FRET, works as a spectroscopic ruler and protractor. With their firm stacking and ability to replace the natural nucleic acid bases inside the base-stack, base analogue donor and acceptor molecules complement external fluorophores like the Cy-, Alexa- and ATTO-dyes and enable detailed investigations of structure and dynamics of nucleic acid containing systems. The first base-base FRET pair, tCO-tCnitro, has recently been complemented with among others the adenine analogue FRET pair, qAN1-qAnitro, increasing the flexibility of the methodology. Here we present the design, synthesis, photophysical characterization and use of such base analogues. They enable a higher control of the FRET orientation factor, κ2, have a different distance window of opportunity than external fluorophores, and, thus, have the potential to facilitate better structure resolution. Netropsin DNA binding and the B-to-Z-DNA transition are examples of structure investigations that recently have been performed using base-base FRET and that are described here. Base-base FRET has been around for less than a decade, only in 2017 expanded beyond one FRET pair, and represents a highly promising structure and dynamics methodology for the field of nucleic acids. Here we bring up its advantages as well as disadvantages and touch upon potential future applications.

8.
J Am Chem Soc ; 139(27): 9271-9280, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28613885

RESUMO

Förster resonance energy transfer (FRET) using fluorescent base analogues is a powerful means of obtaining high-resolution nucleic acid structure and dynamics information that favorably complements techniques such as NMR and X-ray crystallography. Here, we expand the base-base FRET repertoire with an adenine analogue FRET-pair. Phosphoramidite-protected quadracyclic 2'-deoxyadenosine analogues qAN1 (donor) and qAnitro (acceptor) were synthesized and incorporated into DNA by a generic, reliable, and high-yielding route, and both constitute excellent adenine analogues. The donor, qAN1, has quantum yields reaching 21% and 11% in single- and double-strands, respectively. To the best of our knowledge, this results in the highest average brightness of an adenine analogue inside DNA. Its potent emissive features overlap well with the absorption of qAnitro and thus enable accurate FRET-measurements over more than one turn of B-DNA. As we have shown previously for our cytosine analogue FRET-pair, FRET between qAN1 and qAnitro positioned at different base separations inside DNA results in efficiencies that are highly dependent on both distance and orientation. This facilitates significantly enhanced resolution in FRET structure determinations, demonstrated here in a study of conformational changes of DNA upon binding of the minor groove binder netropsin. Finally, we note that the donor and acceptor of our cytosine FRET-pair, tCO and tCnitro, can be conveniently combined with the acceptor and donor of our current adenine pair, respectively. Consequently, our base analogues can now measure base-base FRET between 3 of the 10 possible base combinations and, through base-complementarity, between all sequence positions in a duplex.


Assuntos
DNA/química , Transferência Ressonante de Energia de Fluorescência , Estrutura Molecular
9.
Sci Rep ; 5: 12653, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26227585

RESUMO

Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (εΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.


Assuntos
Adenina/análogos & derivados , Corantes Fluorescentes/química , Adenina/síntese química , Adenina/química , Fluorescência
10.
Chemistry ; 21(10): 4039-48, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25641628

RESUMO

Fluorescent base analogues comprise a group of increasingly important molecules for the investigation of nucleic acid structure, dynamics, and interactions with other molecules. Herein, we report on the quantum chemical calculation aided design, synthesis, and characterization of four new putative quadracyclic adenine analogues. The compounds were efficiently synthesized from a common intermediate through a two-step pathway with the Suzuki-Miyaura coupling as the key step. Two of the compounds, qAN1 and qAN4, display brightnesses (εΦF) of 1700 and 2300, respectively, in water and behave as wavelength-ratiometric pH probes under acidic conditions. The other two, qAN2 and qAN3, display lower brightnesses but exhibit polarity-sensitive dual-band emissions that could prove useful to investigate DNA structural changes induced by DNA-protein or -drug interactions. The four qANs are very promising microenvironment-sensitive fluorescent adenine analogues that display considerable brightness for such compounds.


Assuntos
Adenina/química , Corantes/química , Corantes Fluorescentes/química , Ácidos Nucleicos/química , Pareamento de Bases , Fluorescência , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...