Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 165: 115024, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37399719

RESUMO

The pleckstrin homology [PH] domain is a structural fold found in more than 250 proteins making it the 11th most common domain in the human proteome. 25% of family members have more than one PH domain and some PH domains are split by one, or several other, protein domains although still folding to give functioning PH domains. We review mechanisms of PH domain activity, the role PH domain mutation plays in human disease including cancer, hyperproliferation, neurodegeneration, inflammation, and infection, and discuss pharmacotherapeutic approaches to regulate PH domain activity for the treatment of human disease. Almost half PH domain family members bind phosphatidylinositols [PIs] that attach the host protein to cell membranes where they interact with other membrane proteins to give signaling complexes or cytoskeleton scaffold platforms. A PH domain in its native state may fold over other protein domains thereby preventing substrate access to a catalytic site or binding with other proteins. The resulting autoinhibition can be released by PI binding to the PH domain, or by protein phosphorylation thus providing fine tuning of the cellular control of PH domain protein activity. For many years the PH domain was thought to be undruggable until high-resolution structures of human PH domains allowed structure-based design of novel inhibitors that selectively bind the PH domain. Allosteric inhibitors of the Akt1 PH domain have already been tested in cancer patients and for proteus syndrome, with several other PH domain inhibitors in preclinical development for treatment of other human diseases.


Assuntos
Proteínas Sanguíneas , Domínios de Homologia à Plecstrina , Humanos , Sítios de Ligação , Proteínas Sanguíneas/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica
2.
Chemistry ; 26(28): 6240-6246, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32201996

RESUMO

Hybrid protein-organometallic catalysts are being explored for selective catalysis of a number of reactions, because they utilize the complementary strengths of proteins and of organometallic complex. Herein, we present an artificial hydrogenase, StrepH2, built by incorporating a biotinylated [Fe-Fe] hydrogenase organometallic mimic within streptavidin. This strategy takes advantage of the remarkable strength and specificity of biotin-streptavidin recognition, which drives quantitative incorporation of the biotinylated diironhexacarbonyl center into streptavidin, as confirmed by UV/Vis spectroscopy and X-ray crystallography. FTIR spectra of StrepH2 show characteristic peaks at shift values indicative of interactions between the catalyst and the protein scaffold. StrepH2 catalyzes proton reduction to hydrogen in aqueous media during photo- and electrocatalysis. Under photocatalytic conditions, the protein-embedded catalyst shows enhanced efficiency and prolonged activity compared to the isolated catalyst. Transient absorption spectroscopy data suggest a mechanism for the observed increase in activity underpinned by an observed longer lifetime for the catalytic species FeI Fe0 when incorporated within streptavidin compared to the biotinylated catalyst in solution.

3.
ACS Chem Biol ; 14(12): 2745-2756, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31743648

RESUMO

Bacteria exhibit a myriad of different morphologies, through the synthesis and modification of their essential peptidoglycan (PG) cell wall. Our discovery of a fluorescent D-amino acid (FDAA)-based PG labeling approach provided a powerful method for observing how these morphological changes occur. Given that PG is unique to bacterial cells and a common target for antibiotics, understanding the precise mechanism(s) for incorporation of (F)DAA-based probes is a crucial determinant in understanding the role of PG synthesis in bacterial cell biology and could provide a valuable tool in the development of new antimicrobials to treat drug-resistant antibacterial infections. Here, we systematically investigate the mechanisms of FDAA probe incorporation into PG using two model organisms Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive). Our in vitro and in vivo data unequivocally demonstrate that these bacteria incorporate FDAAs using two extracytoplasmic pathways: through activity of their D,D-transpeptidases, and, if present, by their L,D-transpeptidases and not via cytoplasmic incorporation into a D-Ala-D-Ala dipeptide precursor. Our data also revealed the unprecedented finding that the DAA-drug, D-cycloserine, can be incorporated into peptide stems by each of these transpeptidases, in addition to its known inhibitory activity against D-alanine racemase and D-Ala-D-Ala ligase. These mechanistic findings enabled development of a new, FDAA-based, in vitro labeling approach that reports on subcellular distribution of muropeptides, an especially important attribute to enable the study of bacteria with poorly defined growth modes. An improved understanding of the incorporation mechanisms utilized by DAA-based probes is essential when interpreting results from high resolution experiments and highlights the antimicrobial potential of synthetic DAAs.


Assuntos
Aminoácidos/metabolismo , Sondas Moleculares/metabolismo , Peptidoglicano/biossíntese , Bacillus subtilis/metabolismo , Parede Celular/metabolismo , Citoplasma/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Peptidil Transferases/metabolismo
4.
Acc Chem Res ; 52(9): 2713-2722, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31419110

RESUMO

The bacterial cell wall is composed of membrane layers and a rigid yet flexible scaffold called peptidoglycan (PG). PG provides mechanical strength to enable bacteria to resist damage from the environment and lysis due to high internal turgor. PG also has a critical role in dictating bacterial cell morphology. The essential nature of PG for bacterial propagation, as well as its value as an antibiotic target, has led to renewed interest in the study of peptidoglycan biosynthesis. However, significant knowledge gaps remain that must be addressed before a clear understanding of peptidoglycan synthesis and dynamics is realized. For example, the enzymes involved in the PG biosynthesis pathway have not been fully characterized. Our understanding of PG biosynthesis has been frequently revamped by the discovery of novel enzymes or newly characterized functions of known enzymes. In addition, we do not clearly know how the respective activities of these enzymes are coordinated with each other and how they control the spatial and temporal dynamics of PG synthesis. The emergence of molecular probes and imaging techniques has significantly advanced the study PG synthesis and modification. Prior efforts utilized the specificity of PG-targeting antibiotics and proteins to develop PG-specific probes, such as fluorescent vancomycin and fluorescent wheat germ agglutinin. However, these probes suffer from limitations due to toxic effects toward bacterial cells and poor membrane permeability. To address these issues, we designed and introduced a family of novel molecular probes, fluorescent d-amino acids (FDAAs), which are covalently incorporated into PG through the activities of endogenous bacterial transpeptidases. Their high biocompatibility and PG specificity have made them powerful tools for labeling peptidoglycan. In addition, their enzyme-mediated incorporation faithfully reflects the activity of PG synthases, providing a direct in situ method for studying PG formation during the bacterial life cycle. In this Account, we describe our efforts directed at the development of FDAAs and their derivatives. These probes have enabled for the first time the ability to visualize PG synthesis in live bacterial cells and in real time. We summarize experimental evidence for FDAA incorporation into PG and the enzyme-mediated incorporation pathway. We demonstrate various applications of FDAAs, including bacterial morphology analyses, PG growth model studies, investigation of PG-enzyme correlation, in vitro PG synthase activity assays, and antibiotic inhibition tests. Finally, we discuss the current limitations of the probes and our ongoing efforts to improve them. We are confident that these probes will prove to be valuable tools that will enable the discovery of new antibiotic targets and expand the available arsenal directed at the public health threat posed by antibiotic resistance.


Assuntos
Aminoácidos/química , Corantes Fluorescentes/química , Sondas Moleculares/química , Peptidoglicano/biossíntese , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/citologia , Agrobacterium tumefaciens/metabolismo , Aminoácidos/síntese química , Bacillus subtilis/química , Bacillus subtilis/citologia , Bacillus subtilis/metabolismo , Configuração de Carboidratos , Parede Celular/química , Parede Celular/metabolismo , Escherichia coli/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Corantes Fluorescentes/síntese química , Sondas Moleculares/síntese química , Peptidoglicano/química
5.
Nat Chem ; 11(4): 335-341, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30804500

RESUMO

Peptidoglycan is an essential cell wall component that maintains the morphology and viability of nearly all bacteria. Its biosynthesis requires periplasmic transpeptidation reactions, which construct peptide crosslinkages between polysaccharide chains to endow mechanical strength. However, tracking the transpeptidation reaction in vivo and in vitro is challenging, mainly due to the lack of efficient, biocompatible probes. Here, we report the design, synthesis and application of rotor-fluorogenic D-amino acids (RfDAAs), enabling real-time, continuous tracking of transpeptidation reactions. These probes allow peptidoglycan biosynthesis to be monitored in real time by visualizing transpeptidase reactions in live cells, as well as real-time activity assays of D,D- and L,D-transpeptidases and sortases in vitro. The unique ability of RfDAAs to become fluorescent when incorporated into peptidoglycan provides a powerful new tool to study peptidoglycan biosynthesis with high temporal resolution and prospectively enable high-throughput screening for inhibitors of peptidoglycan biosynthesis.


Assuntos
Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Peptidoglicano/biossíntese , Peptidil Transferases/metabolismo , Aminoácidos/química , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Parede Celular/metabolismo , Ensaios Enzimáticos/métodos , Cinética , Streptomyces/enzimologia , Streptomyces/metabolismo
6.
Annu Rev Biochem ; 87: 991-1014, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29596002

RESUMO

Peptidoglycan is an essential component of the cell wall that protects bacteria from environmental stress. A carefully coordinated biosynthesis of peptidoglycan during cell elongation and division is required for cell viability. This biosynthesis involves sophisticated enzyme machineries that dynamically synthesize, remodel, and degrade peptidoglycan. However, when and where bacteria build peptidoglycan, and how this is coordinated with cell growth, have been long-standing questions in the field. The improvement of microscopy techniques has provided powerful approaches to study peptidoglycan biosynthesis with high spatiotemporal resolution. Recent development of molecular probes further accelerated the growth of the field, which has advanced our knowledge of peptidoglycan biosynthesis dynamics and mechanisms. Here, we review the technologies for imaging the bacterial cell wall and its biosynthesis activity. We focus on the applications of fluorescent d-amino acids, a newly developed type of probe, to visualize and study peptidoglycan synthesis and dynamics, and we provide direction for prospective research.


Assuntos
Bactérias/metabolismo , Parede Celular/metabolismo , Peptidoglicano/biossíntese , Aminoácidos/química , Bactérias/ultraestrutura , Parede Celular/ultraestrutura , Corantes Fluorescentes/química , Microscopia de Força Atômica , Microscopia Eletrônica , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...