Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 36(17): 4895-906, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27122044

RESUMO

UNLABELLED: Dyslexia is the most common developmental language disorder and is marked by deficits in reading and phonological awareness. One theory of dyslexia suggests that the phonological awareness deficit is due to abnormal auditory processing of speech sounds. Variants in DCDC2 and several other neural migration genes are associated with dyslexia and may contribute to auditory processing deficits. In the current study, we tested the hypothesis that RNAi suppression of Dcdc2 in rats causes abnormal cortical responses to sound and impaired speech sound discrimination. In the current study, rats were subjected in utero to RNA interference targeting of the gene Dcdc2 or a scrambled sequence. Primary auditory cortex (A1) responses were acquired from 11 rats (5 with Dcdc2 RNAi; DC-) before any behavioral training. A separate group of 8 rats (3 DC-) were trained on a variety of speech sound discrimination tasks, and auditory cortex responses were acquired following training. Dcdc2 RNAi nearly eliminated the ability of rats to identify specific speech sounds from a continuous train of speech sounds but did not impair performance during discrimination of isolated speech sounds. The neural responses to speech sounds in A1 were not degraded as a function of presentation rate before training. These results suggest that A1 is not directly involved in the impaired speech discrimination caused by Dcdc2 RNAi. This result contrasts earlier results using Kiaa0319 RNAi and suggests that different dyslexia genes may cause different deficits in the speech processing circuitry, which may explain differential responses to therapy. SIGNIFICANCE STATEMENT: Although dyslexia is diagnosed through reading difficulty, there is a great deal of variation in the phenotypes of these individuals. The underlying neural and genetic mechanisms causing these differences are still widely debated. In the current study, we demonstrate that suppression of a candidate-dyslexia gene causes deficits on tasks of rapid stimulus processing. These animals also exhibited abnormal neural plasticity after training, which may be a mechanism for why some children with dyslexia do not respond to intervention. These results are in stark contrast to our previous work with a different candidate gene, which caused a different set of deficits. Our results shed some light on possible neural and genetic mechanisms causing heterogeneity in the dyslexic population.


Assuntos
Estimulação Acústica/métodos , Dislexia/genética , Proteínas Associadas aos Microtúbulos/genética , Som , Percepção da Fala/fisiologia , Animais , Córtex Auditivo/fisiologia , Percepção Auditiva , Feminino , Masculino , Plasticidade Neuronal/genética , Interferência de RNA , Ratos , Percepção da Fala/genética , Percepção da Fala/efeitos da radiação
2.
Dev Neurosci ; 35(1): 50-68, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23594585

RESUMO

The current study investigated the behavioral and neuroanatomical effects of embryonic knockdown of the candidate dyslexia susceptibility gene (CDSG) homolog Dyx1c1 through RNA interference (RNAi) in rats. Specifically, we examined long-term effects on visual attention abilities in male rats, in addition to assessing rapid and complex auditory processing abilities in male and, for the first time, female rats. Our results replicated prior evidence of complex acoustic processing deficits in Dyx1c1 male rats and revealed new evidence of comparable deficits in Dyx1c1 female rats. Moreover, we found new evidence that knocking down Dyx1c1 produced orthogonal impairments in visual attention in the male subgroup. Stereological analyses of male brains from prior RNAi studies revealed that, despite consistent visible evidence of disruptions of neuronal migration (i.e., heterotopia), knockdown of Dyx1c1 did not significantly alter the cortical volume, hippocampal volume, or midsagittal area of the corpus callosum (measured in a separate cohort of like-treated Dyx1c1 male rats). Dyx1c1 transfection did, however, lead to significant changes in medial geniculate nucleus (MGN) anatomy, with a significant shift to smaller MGN neurons in Dyx1c1-transfected animals. Combined results provide important information about the impact of Dyx1c1 on behavioral functions that parallel domains known to be affected in language-impaired populations as well as information about widespread changes to the brain following early disruption of this CDSG.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Proteínas de Transporte/fisiologia , Córtex Cerebral/anormalidades , Corpos Geniculados/anormalidades , Percepção Visual/fisiologia , Agenesia do Corpo Caloso/patologia , Animais , Proteínas de Transporte/genética , Feminino , Técnicas de Silenciamento de Genes , Hipocampo/anormalidades , Masculino , Malformações do Desenvolvimento Cortical do Grupo II/patologia , Aprendizagem em Labirinto , Interferência de RNA , Ratos , Ratos Wistar
3.
J Autism Dev Disord ; 37(5): 911-20, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17019626

RESUMO

Increasing evidence indicates that the GABAergic system in cerebellar and limbic structures is affected in autism. We extended our previous study that found reduced [(3)H]flunitrazepam-labeled benzodiazepine sites in the autistic hippocampus to determine whether this reduction was due to a decrease in binding site number (B (max)) or altered affinity (K (d)) to bind to the ligand. Quantitation of hippocampal lamina demonstrated a 20% reduction in B (max) indicating a trend toward a decreased number of benzodiazepine binding sites in the autistic group but normal K (d) values. A reduction in the number of hippocampal benzodiazepine binding sites suggests alterations in the modulation of GABA(A) receptors in the presence of GABA in the autistic brain, possibly resulting in altered inhibitory functioning of hippocampal circuitry.


Assuntos
Transtorno Autístico/diagnóstico , Transtorno Autístico/patologia , Benzodiazepinas/farmacocinética , Flunitrazepam/farmacocinética , Moduladores GABAérgicos/farmacocinética , Hipocampo/metabolismo , Hipocampo/patologia , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Adolescente , Adulto , Autorradiografia/instrumentação , Sítios de Ligação/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/patologia , Humanos , Masculino , Corpos de Nissl/metabolismo , Corpos de Nissl/patologia , Receptores de GABA/metabolismo
4.
Hum Mol Genet ; 14(14): 2027-34, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15930016

RESUMO

Fragile X syndrome (FXS) is almost always caused by silencing of the FMR1 gene. The defects observed in FXS indicate that the normal FMR1 gene has a range of functions and plays a particularly prominent role during development. However, the mechanisms regulating FMR1 expression in vivo are not known. Here, we have tested the role of the transcription factor AP-2alpha in regulating Fmr1 expression. Chromatin immunoprecipitation showed that AP-2alpha associates with the Fmr1 promoter in vivo. Furthermore, Fmr1 transcript levels are reduced >4-fold in homozygous null AP-2alpha mutant mice at embryonic day 18.5 when compared with normal littermates. Notably, AP-2alpha exhibits a strong gene dosage effect, with heterozygous mice showing approximately 2-fold reduction in Fmr1 levels. Examination of conditional AP-2alpha mutant mice indicates that this transcription factor plays a major role in regulating Fmr1 expression in embryos, but not in adults. We further investigated the role of AP-2alpha in the developmental regulation of Fmr1 expression using the Xenopus animal cap assay. Over-expression of a dominant-negative AP-2alpha in Xenopus embryos led to reduced Fmr1 levels. Moreover, exogenous wild-type AP-2alpha rescued Fmr1 expression in embryos where endogenous AP-2alpha had been suppressed. We conclude that AP-2alpha associates with the Fmr1 promoter in vivo and selectively regulates Fmr1 transcription during embryonic development.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Transcrição Gênica/fisiologia , Animais , Sequência de Bases , Northern Blotting , DNA , Células HeLa , Humanos , Hibridização In Situ , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Xenopus
5.
J Cell Physiol ; 205(2): 170-5, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15895397

RESUMO

The past several years have seen remarkable growth in our understanding of the molecular processes underlying fragile X syndrome (FXS). Many studies have provided new insights into the regulation of Fmr1 gene expression and the potential function of its protein product. It is now known that the promoter elements modulating Fmr1 transcription involve a complex array of both cis and trans factors. Moreover, recent studies of epigenetic modification of chromatin have provided novel clues to unlocking the mysteries behind the regulation of Fmr1 expression. Here, we review the latest findings on the regulation of Fmr1 transcription.


Assuntos
Encéfalo/metabolismo , Síndrome do Cromossomo X Frágil/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica , Transcrição Gênica , Síndrome do Cromossomo X Frágil/embriologia , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...