Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 112, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902288

RESUMO

Analysis of virus-like particles (VLPs) is an essential task in optimizing their implementation as vaccine antigens for virus-initiated diseases. Interrogating VLP collections for elasticity by probing with a rigid atomic force microscopy (AFM) tip is a potential method for determining VLP morphological changes. During VLP morphological change, it is not expected that all VLPs would be in the same state. This leads to the open question of whether VLPs may change in a continuous or stepwise fashion. For continuous change, the statistical distribution of observed VLP properties would be expected as a single distribution, while stepwise change would lead to a multimodal distribution of properties. This study presents the application of a Gaussian mixture model (GMM), fit by the Expectation-Maximization (EM) algorithm, to identify different states of VLP morphological change observed by AFM imaging.

2.
Molecules ; 26(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885855

RESUMO

We present four unique prediction techniques, combined with multiple data pre-processing methods, utilizing a wide range of both oil types and oil peroxide values (PV) as well as incorporating natural aging for peroxide creation. Samples were PV assayed using a standard starch titration method, AOCS Method Cd 8-53, and used as a verified reference method for PV determination. Near-infrared (NIR) spectra were collected from each sample in two unique optical pathlengths (OPLs), 2 and 24 mm, then fused into a third distinct set. All three sets were used in partial least squares (PLS) regression, ridge regression, LASSO regression, and elastic net regression model calculation. While no individual regression model was established as the best, global models for each regression type and pre-processing method show good agreement between all regression types when performed in their optimal scenarios. Furthermore, small spectral window size boxcar averaging shows prediction accuracy improvements for edible oil PVs. Best-performing models for each regression type are: PLS regression, 25 point boxcar window fused OPL spectral information RMSEP = 2.50; ridge regression, 5 point boxcar window, 24 mm OPL, RMSEP = 2.20; LASSO raw spectral information, 24 mm OPL, RMSEP = 1.80; and elastic net, 10 point boxcar window, 24 mm OPL, RMSEP = 1.91. The results show promising advancements in the development of a full global model for PV determination of edible oils.


Assuntos
Peróxidos/química , Óleos de Plantas/química , Análise dos Mínimos Quadrados , Análise de Regressão
3.
Appl Spectrosc ; 75(7): 781-794, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33522275

RESUMO

The peroxide value of edible oils is a measure of the degree of oxidation, which directly relates to the freshness of the oil sample. Several studies previously reported in the literature have paired various spectroscopic techniques with multivariate analyses to rapidly determine peroxide values using field portable and process instrumentation; those efforts presented "best-case scenarios" with oils from narrowly defined training and test sets. The purpose of this paper is to evaluate the use of near- and mid-infrared absorption and Raman scattering spectroscopies on oil samples from different oil classes, including seasonal and vendor variations, to determine which measurement technique or combination thereof is best for predicting peroxide values. Following peroxide value assays of each oil class using an established titration-based method, global and global-subset calibration models were constructed from spectroscopic data collected on the 19 oil classes used in this study. Spectra from each optical technique were used to create partial least squares regression calibration models to predict the peroxide value of unknown oil samples. A global peroxide value model based on near-infrared (8 mm optical path length) oil measurements produced the lowest RMSEP (4.9), followed by 24 mm optical path length near infrared (5.1), Raman (6.9) and 50 µm optical path length mid-infrared (7.3). However, it was determined that the Raman RMSEP resulted from chance correlations. Global peroxide value models based on low-level fusion of the NIR (8 and 24 mm optical path length) data and all infrared data produced the same RMSEP of 5.1. Global subset models, based on any of the spectroscopies and olive oil training sets from any class (pure, extra light, extra virgin), all failed to extrapolate to the non-olive oils. However, the near-infrared global subset model built on extra virgin olive oil could extrapolate to test samples from other olive oil classes. This work demonstrates the difficulty of developing a truly global method for determining peroxide value of oils.


Assuntos
Peróxidos , Óleos de Plantas , Análise dos Mínimos Quadrados , Análise Multivariada , Azeite de Oliva
4.
Molecules ; 26(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430485

RESUMO

During conservation of the painted ceiling decoration of Lin'xi Pavilion in the Forbidden City, two distinct paint campaigns were isolated as a unique case study into architectural paint materials during both the Ming and Qing dynasties. Paint samples and cross sections from both paint generations were analyzed with SEM-EDX, time of flight-secondary ion mass spectrometry (ToF-SIMS), XRD, FTIR, and Raman spectroscopies. Similar organic and inorganic materials characteristic of these time periods were identified. The pigments of interest found in both paint generations were botallackite and atacamite polymorphs. This suggests a shift from natural mineral sources to synthetic copper-based pigments for these larger architectural projects.


Assuntos
Corantes/análise , Corantes/química , Pintura/análise , Espectrometria de Massas , Análise Espectral Raman , Difração de Raios X
5.
Analyst ; 145(23): 7571-7581, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33030462

RESUMO

Directed enzyme evolution has led to significant application of biocatalysis for improved chemical transformations throughout the scientific and industrial communities. Biocatalytic reactions utilizing evolved enzymes immobilized within microporous supports have realized unique advantages, including notably higher enzyme stability, higher enzyme load, enzyme reusability, and efficient product-enzyme separation. To date, limited analytical methodology is available to discern the spatial and chemical distribution of immobilized enzymes, in which techniques for surface visualization, enzyme stability, or activity are instead employed. New analytical tools to investigate enzyme immobilization are therefore needed. In this work, development, application, and evaluation of an analytical methodology to study enzyme immobilization is presented. Specifically, Raman hyperspectral imaging with principal component analysis, a multivariate method, is demonstrated for the first time to investigate evolved enzymes immobilized onto microporous supports for biocatalysis. Herein we demonstrate the ability to spatially and spectrally resolve evolved pantothenate kinase (PanK) immobilized onto two commercially-available, chemically-diverse porous resins. This analytical methodology is able to chemically distinguish evolved enzyme, resin, and chemical species pertinent to immobilization. As such, a new analytical approach to study immobilized biocatalysts is demonstrated, offering potential wide application for analysis of protein or biomolecule immobilization.


Assuntos
Enzimas Imobilizadas , Imageamento Hiperespectral , Biocatálise , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Análise Multivariada
6.
Analyst ; 144(18): 5425-5438, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31407728

RESUMO

Multivariate curve resolution-alternating least squares (MCR-ALS) applied to hyperspectral Raman imaging is extensively used to spatially and spectrally resolve the individual, pure chemical species within complex, heterogeneous samples. A critical aspect of performing MCR-ALS with hyperspectral Raman imaging is the selection of the number of chemical components within the experimental data. Several methods have previously been proposed to determine the number of chemical components, but it remains a challenging task that if done incorrectly, can lead to the loss of chemical information. In this work, we show that the choice of 'optimal' number of factors in the MCR-ALS model may vary depending on the relative contribution of the targeted species to the overall spectral intensity. In a data set consisting of 27 hyperspectral Raman images of TiO2 polymorphs, it was observed that the more dominant species were best resolved with a parsimonious model. However, species with intensities near the noise level often needed more factors to be resolved than was predicted by standard methods. Based on the observations in this data set, we propose a new method that employs approximate reference spectra for determining optimal model complexity for identifying minor constituents with MCR-ALS.

7.
Analyst ; 144(17): 5117-5126, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31309214

RESUMO

Many species of Dalbergia are prized hardwoods, generally referred to as 'Rosewood,' and used in high-end products due to their distinctive hue and scent. Despite more than 58 species of Dalbergia being listed as endangered in Appendix 1 of The Convention on International Trade in Endangered Species of Fauna and Flora (CITES), the illegal logging and trade of this timber is ongoing. In this work, a handheld laser induced breakdown spectrometer (LIBS) was used to analyze seven Dalbergia species and two other exotic hardwood species to evaluate the ability of handheld LIBS for rapid classification of Dalbergia in the field. The KNN model of the classification presented 80% to 90% sensitivity for discriminating between Dalbergia species in the training set. PLS-DA models were based on a binary decision tree structure. Cumulatively, the PLS-DA decision tree model showed greater than 97% sensitivity and 99% selectivity for prediction of Dalbergia species included in the training set. The data presented in the following study are promising for the use of handheld LIBS devices and both KNN and PLS-DA models for applications in customs screenings at the port of entry of hard woods, among others.


Assuntos
Dalbergia/classificação , Madeira/química , Árvores de Decisões , Análise Discriminante , Espécies em Perigo de Extinção , Análise dos Mínimos Quadrados , Espectrofotometria Atômica/instrumentação , Espectrofotometria Atômica/métodos
8.
Appl Spectrosc ; 73(11): 1255-1264, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31124370

RESUMO

Copper-containing materials such as verdigris are commonly found in historic and artistic works of art, often at advanced states of decay. Applied on paper as inks and watercolors, many of which needed a binder such as gum arabic, the intrinsic instability of this pigment was known since the medieval period. The decay of verdigris (a mixture of copper acetates) as a pigment, as watercolor, and as a dye, was studied using a combination of vibrational (Fourier transform infrared) and X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) instrumental techniques. Changes in the copper oxidative states and the formation of copper oxide were monitored during accelerated degradation as powdered solids and applied on mockup samples (with and without binder). Accelerated aging of both commercially available and synthesized verdigris pigments showed the presence of an intermediate species, Cu(CH3COO)2•3Cu(OH)2•2H2O, which points to the beginning of the decay processes, that culminates in the formation of Cu(II) oxide. However, the presence of gum arabic seems to delay deterioration, by temporarily reducing Cu(II) to Cu(I), even when the final product includes Cu(II). This novel application of XPS and supporting techniques has significant implications in art conservation, as the identified behavior helps explain the better preservation state of some works of art.

9.
Appl Spectrosc ; 72(3): 404-419, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28675305

RESUMO

Lunar meteorites provide a more random sampling of the surface of the Moon than do the returned lunar samples, and they provide valuable information to help estimate the chemical composition of the lunar crust, the lunar mantle, and the bulk Moon. As of July 2014, ∼96 lunar meteorites had been documented and ten of these are unbrecciated mare basalts. Using Raman imaging with multivariate curve resolution-alternating least squares (MCR-ALS), we investigated portions of polished thin sections of paired, unbrecciated, mare-basalt lunar meteorites that had been collected from the LaPaz Icefield (LAP) of Antarctica-LAP 02205 and LAP 04841. Polarized light microscopy displays that both meteorites are heterogeneous and consist of polydispersed sized and shaped particles of varying chemical composition. For two distinct probed areas within each meteorite, the individual chemical species and associated chemical maps were elucidated using MCR-ALS applied to Raman hyperspectral images. For LAP 02205, spatially and spectrally resolved clinopyroxene, ilmenite, substrate-adhesive epoxy, and diamond polish were observed within the probed areas. Similarly, for LAP 04841, spatially resolved chemical images with corresponding resolved Raman spectra of clinopyroxene, troilite, a high-temperature polymorph of anorthite, substrate-adhesive epoxy, and diamond polish were generated. In both LAP 02205 and LAP 04841, substrate-adhesive epoxy and diamond polish were more readily observed within fractures/veinlet features. Spectrally diverse clinopyroxenes were resolved in LAP 04841. Factors that allow these resolved clinopyroxenes to be differentiated include crystal orientation, spatially distinct chemical zoning of pyroxene crystals, and/or chemical and molecular composition. The minerals identified using this analytical methodology-clinopyroxene, anorthite, ilmenite, and troilite-are consistent with the results of previous studies of the two meteorites using electron microprobe analysis. To our knowledge, this is the first report of MCR-ALS with Raman imaging used for the investigation of both lunar and other types of meteorites. We have demonstrated the use of multivariate analysis methods, namely MCR-ALS, with Raman imaging to investigate heterogeneous lunar meteorites. Our analytical methodology can be used to elucidate the chemical, molecular, and structural characteristics of phases in a host of complex, heterogeneous geological, geochemical, and extraterrestrial materials.

10.
Appl Spectrosc ; 71(8): 1816-1833, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28756705

RESUMO

The high-pressure, α-PbO2-structured polymorph of titanium dioxide (TiO2-II) was recently identified in micrometer-sized grains recovered from four Neoarchean spherule layers deposited between ∼2.65 and ∼2.54 billion years ago. Several lines of evidence support the interpretation that these layers represent distal impact ejecta layers. The presence of shock-induced TiO2-II provides physical evidence to further support an impact origin for these spherule layers. Detailed characterization of the distribution of TiO2-II in these grains may be useful for correlating the layers, estimating the paleodistances of the layers from their source craters, and providing insight into the formation of the TiO2-II. Here we report the investigation of TiO2-II-bearing grains from these four spherule layers using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping. Raman spectra provide evidence of grains consisting primarily of rutile (TiO2) and TiO2-II, as shown by Raman bands at 174 cm-1 (TiO2-II), 426 cm-1 (TiO2-II), 443 cm-1 (rutile), and 610 cm-1 (rutile). Principal component analysis (PCA) yielded a predominantly three-phase system comprised of rutile, TiO2-II, and substrate-adhesive epoxy. Scanning electron microscopy (SEM) suggests heterogeneous grains containing polydispersed micrometer- and submicrometer-sized particles. Multivariate curve resolution-alternating least squares applied to the Raman microspectroscopic mapping yielded up to five distinct chemical components: three phases of TiO2 (rutile, TiO2-II, and anatase), quartz (SiO2), and substrate-adhesive epoxy. Spectral profiles and spatially resolved chemical maps of the pure chemical components were generated using MCR-ALS applied to the Raman microspectroscopic maps. The spatial resolution of the Raman microspectroscopic maps was enhanced in comparable, cost-effective analysis times by limiting spectral resolution and optimizing spectral acquisition parameters. Using the resolved spectra of TiO2-II generated from MCR-ALS analysis, a Raman spectrum for pure TiO2-II was estimated to further facilitate its identification.

11.
Analyst ; 142(17): 3140-3156, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28678223

RESUMO

The search for evidence of extant or past life on Mars is a primary objective of both the upcoming Mars 2020 rover (NASA) and ExoMars 2020 rover (ESA/Roscosmos) missions. This search will involve the detection and identification of organic molecules and/or carbonaceous material within the Martian surface environment. For the first time on a mission to Mars, the scientific payload for each rover will include a Raman spectrometer, an instrument well-suited for this search. Hematite (α-Fe2O3) is a widespread mineral on the Martian surface. The 2LO Raman band of hematite and the Raman D-band of carbonaceous material show spectral overlap, leading to the potential misidentification of hematite as carbonaceous material. Here we report the ability to spatially and spectrally differentiate carbonaceous material from hematite using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping under both 532 nm and 785 nm excitation. For this study, a sample comprised of hematite, carbonaceous material, and substrate-adhesive epoxy in spatially distinct domains was constructed. Principal component analysis (PCA) reveals that both 532 nm and 785 nm excitation produce representative three-phase systems of hematite, carbonaceous material, and substrate-adhesive epoxy in the analyzed sample. MCR-ALS with Raman microspectroscopic mapping using both 532 nm and 785 nm excitation was able to resolve hematite, carbonaceous material, and substrate-adhesive epoxy by generating spatially-resolved chemical maps and corresponding Raman spectra of these spatially distinct chemical species. Moreover, MCR-ALS applied to the combinatorial data sets of 532 nm and 785 nm excitation, which contain hematite and carbonaceous material within the same locations, was able to resolve hematite, carbonaceous material, and substrate-adhesive epoxy. Using multivariate analysis with Raman microspectroscopic mapping, 785 nm excitation more effectively resolved hematite, carbonaceous material, and substrate-adhesive epoxy as compared to 532 nm excitation. To our knowledge, this is the first report of multivariate analysis methods, namely MCR-ALS, with Raman microspectroscopic mapping being employed to differentiate carbonaceous material from hematite. We have therefore provided an analytical methodology useful for the search for extant or past life on the surface of Mars.

12.
ACS Nano ; 10(5): 5204-11, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27096412

RESUMO

The emergence of stretchable electronic devices has attracted intensive attention. However, most of the existing stretchable electronic devices can generally be stretched only in one specific direction and show limited specific capacitance and energy density. Here, we report a stretchable isotropic buckled carbon nanotube (CNT) film, which is used as electrodes for supercapacitors with low sheet resistance, high omnidirectional stretchability, and electro-mechanical stability under repeated stretching. After acid treatment of the CNT film followed by electrochemical deposition of polyaniline (PANI), the resulting isotropic buckled acid treated CNT@PANI electrode exhibits high specific capacitance of 1147.12 mF cm(-2) at 10 mV s(-1). The supercapacitor possesses high energy density from 31.56 to 50.98 µWh cm(-2) and corresponding power density changing from 2.294 to 28.404 mW cm(-2) at the scan rate from 10 to 200 mV s(-1). Also, the supercapacitor can sustain an omnidirectional strain of 200%, which is twice the maximum strain of biaxially stretchable supercapacitors based on CNT assemblies reported in the literature. Moreover, the capacitive performance is even enhanced to 1160.43-1230.61 mF cm(-2) during uniaxial, biaxial, and omnidirectional elongations.

13.
Anal Chem ; 87(4): 2488-94, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25526646

RESUMO

Electrografted diazonium salt layers on the surface of surface plasmon resonance (SPR) sensors present potential for a significant improvement in antifouling coatings. A pulsed potential deposition profile was used in order to circumvent mass-transport limitations for layer deposition rate. The influence of number of pulses with respect to antifouling efficacy was evaluated by nonspecific adsorption surface coverage of crude bovine serum proteins. Instead of using empirical and rough estimated values, the penetration depth and sensitivity of the SPR instrument were experimentally determined for the calculation of nonspecific adsorption surface coverage. This provides a method to better examine antifouling surface coatings and compare crossing different coatings and experimental systems. Direct comparison of antifouling performance of different diazonium salts was facilitated by a tripad SPR sensor design. The electrografted 4-phenylalanine diazonium chloride (4-APhe) layers with zwitterionic characteristic demonstrate ultralow fouling.


Assuntos
Incrustação Biológica , Compostos de Diazônio/química , Soroalbumina Bovina/análise , Ressonância de Plasmônio de Superfície , Animais , Bovinos , Estrutura Molecular , Sais/química , Propriedades de Superfície
14.
Anal Chem ; 86(7): 3355-64, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24499170

RESUMO

Nanohole arrays exhibit unique surface plasmon resonance (SPR) characteristics according to hole periodicity, diameter, and excitation wavelength (λ(SPR)). This contribution investigates the SPR characteristics and surface sensitivity of various nanohole arrays with the aim of tuning the parameters for optimal sensing capability. Both the Bragg surface plasmons (SPs) arising from diffraction by the periodic holes and the traditional propagating SPs are characterized with emphasis on sensing capability of the propagating SPs. Several trends in bulk sensitivity and penetration depth were established, and the surface sensitivity was calculated from bulk sensitivity and penetration depth of the SPs for different analyte thicknesses. Increased accuracy and precision in penetration depth values were achieved by incorporating adsorbate effects on substrate permittivity. The optimal nanohole array conditions for highest surface sensitivity were determined (820 nm periodicity, 0.27 diameter/periodicity, and λ(SPR) = 1550 nm), which demonstrated an increase in surface sensitivity for the 10 nm analyte over continuous gold films at their optimal λ(SPR) (1300 nm) and conventional visible λ(SPR) (700 nm).


Assuntos
Nanoestruturas , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Ressonância de Plasmônio de Superfície/métodos
15.
Anal Chem ; 85(10): 4875-83, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23566015

RESUMO

The penetration depth of surface plasmons is commonly determined empirically from the observed response for adsorbate loading on gold surface plasmon resonance (SPR) substrates. However, changes in the SPR spectrum may originate from both changes in the effective refractive index near the metal surface and changes in the metal permittivity following covalent binding of the adsorbate layer. Herein, the significance of incorporating an additional adsorbate-metal bonding effect in the calculation is demonstrated in theory and in practice. The bonding effect is determined from the nonzero intercept of a SPR shift versus adsorbate thickness calibration and incorporated into the calculation of penetration depth at various excitation wavelengths. Determinations of plasmon penetration depth with and without the bonding response for alkanethiolate-gold are compared and are shown to be significantly different for a thiol monolayer adsorbate system. Additionally, plasmon penetration depth evaluated with bonding effect compensation shows greater consistency over different adsorbate thicknesses and better agreement with theory derived from Maxwell's equation, particularly for adsorbate thicknesses that are much smaller (<5%) than the plasmon penetration depth. The method is also extended to a more practically applicable polyelectrolyte multilayer adsorbate system.


Assuntos
Metais/química , Ressonância de Plasmônio de Superfície/métodos , Adsorção , Alcanos/química
16.
Rev Sci Instrum ; 83(9): 095113, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23020425

RESUMO

A second generation prototype enabling surface plasmon resonance spectroscopic measurements in the infrared (IR) range is described. The new design (v2) uses the optical train (optics and detector) within conventional FT-IR spectrometers by confining dimensions of the accessory to space available within the sample compartment of the spectrometer. The v2 accessory builds upon knowledge gained from a previous version that was based on a modified commercial variable angle spectroscopic accessory and addresses observed limitations of the original design-improved temporal stability and measurement acquisition speed, crucial to biomolecular binding studies, as well as optical flexibility, a requirement for investigations of novel plasmon-supporting materials. Different aspects of the accessory, including temporal stability, mechanical resilience, and sensitivity to changes in refractive index of a sample were evaluated and presented in this contribution.

17.
J Phys Chem B ; 116(36): 11274-83, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22861526

RESUMO

The solvation of fructose in dimethyl sulfoxide (DMSO) and DMSO-H(2)O (or DMSO-D(2)O) mixtures was investigated using vibrational spectroscopy (Raman, ATR/FTIR) and molecular dynamics (MD) simulations. The analysis of the fructose hydroxyl hydrogen-DMSO oxygen radial distribution function showed that the coordination number of DMSO around the furanose form of fructose is ~3.5. This number is smaller than the number of hydroxyl groups of fructose because one DMSO molecule is shared between two hydroxyl groups and because intramolecular hydrogen bonds are formed. In the case of fructose-DMSO mixtures, a red shift of the Raman S═O asymmetric stretch is observed, which indicates that fructose breaks the DMSO clusters through strong hydrogen bonding between the hydrogen atoms of its hydroxyl groups and the oxygen atom of DMSO. The Raman scattering cross sections of the DMSO S═O stretch when a DMSO molecule interacts with another DMSO molecule, a fructose molecule, or a water molecule were estimated from the spectra of the binary mixtures using the coordination numbers from MD simulations. It was also possible to use these values together with the MD-estimated coordination numbers to satisfactorily predict the effect of the water fraction on the Raman scattering intensity of the S═O stretching band in ternary mixtures. MD simulations also showed that, with increasing water content, the DMSO orientation around fructose changed, with the sulfur atom moving away from the carbohydrate. The deconvolution of the fructose IR OH stretching region revealed that the hydroxyls of fructose can be separated into two groups that participate in hydrogen bonds of different strengths. MD simulations showed that the three hydroxyls of the fructose ring form stronger hydrogen bonds with the solvent than the remaining hydroxyls, providing an explanation for the experimental observations. Finally, analysis of ATR/FTIR spectra revealed that, with increasing water content, the average hydrogen-bond enthalpy of the fructose hydroxyls decreases by ~2.5 kJ/mol.


Assuntos
Dimetil Sulfóxido/química , Frutose/química , Água/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
18.
Anal Chem ; 84(18): 7891-8, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22924323

RESUMO

Herein, we describe the construction of a novel dual-pad referencing surface plasmon resonance (SPR) sensor utilizing electrolytic grafting of diazonium salts to individually functionalize two gold pads positioned in a single fluidic channel. Using a dove prism, a simple single axis optical train may be employed without compromising the analytical performance. Once functionalized, one pad is used as the analytical sensing pad for detection of molecular interactions while the other serves as the reference pad, compensating for background refractive index fluctuations. The reference pad effectively compensates bulk refractive index changes and temperature variations as well as other nonspecific effects. The sensor was applied to calibration of a pH-responsive polymer layer in the presence of bulk refractive index and temperature variations. Monitoring selective attachment of a protein is also demonstrated. To our knowledge, this is the first implementation of in-channel referencing SPR sensor utilizing diazonium salt-based surface chemistry.


Assuntos
Ressonância de Plasmônio de Superfície/métodos , Compostos Azo/química , Desenho de Equipamento , Ouro/química , Concentração de Íons de Hidrogênio , Proteínas/química , Proteínas/metabolismo , Refratometria , Sais/química , Ressonância de Plasmônio de Superfície/instrumentação , Temperatura
19.
Anal Chem ; 84(13): 5770-7, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22702642

RESUMO

Thin films of conducting polymers exhibit unique chemical and physical properties that render them integral parts in microelectronics, energy storage devices, and chemical sensors. Overall, polyaniline (PAni) doped in acidic media has shown metal-like electronic conductivity, though exact physical and chemical properties are dependent on the polymer structure and dopant type. Difficulties arising from poor processability render production of doped PAni thin films particularly challenging. In this contribution, DC magnetron sputtering, a physical vapor deposition technique, is applied to the preparation of conductive thin films of PAni doped with hydrochloric acid (PAni-HCl) in an effort to circumvent issues associated with conventional thin film preparation methods. Samples manufactured by the sputtering method are analyzed along with samples prepared by conventional drop-casting. Physical characterization (atomic force microscopy, AFM) confirm the presence of PAni-HCl and show that films exhibit a reduced roughness and potentially pinhole-free coverage of the substrate. Spectroscopic evidence (UV-vis, FT-IR, and X-ray photoelectron spectroscopy (XPS)) suggests that structural changes and loss of conductivity, not uncommon during PAni processing, does occur during the preparation process. Finally, the applicability of sputtered films to gas-phase sensing of NH(3) was investigated with surface plasmon resonance (SPR) spectroscopy and compared to previous contributions. In summary, sputtered PAni-HCl films exhibit quantifiable, reversible behavior upon exposure to NH(3) with a calculated LOD (by method) approaching 0.4 ppm NH(3) in dry air.


Assuntos
Amônia/análise , Compostos de Anilina/química , Gases/análise , Ácido Clorídrico/química , Nanoestruturas/química , Ressonância de Plasmônio de Superfície , Limite de Detecção , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Espectrofotometria Ultravioleta , Ressonância de Plasmônio de Superfície/métodos , Propriedades de Superfície
20.
Talanta ; 86: 133-41, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22063522

RESUMO

Molecularly imprinted hydrogel membranes were developed and evaluated for detection of small analytes via surface plasmon resonance spectroscopy. Imprinting of glucose phosphate barium salt into a poly(allylamine hydrochloride) network covalently bound to gold surfaces yielded a selective sensor for glucose. Optimization of relative amounts of chemicals used for preparation of the hydrogel was performed to obtain highest sensitivity. Addition of gold nanoparticles into the hydrogel matrix significantly amplified its response and sensitivity due to the impact of gold nanoparticles on the refractive index of the sensing layer. Evaluation of its selectivity showed that the sensor displayed preferential recognition to glucose compared to structurally related sugars in addition to being unaffected by phosphate as well as compounds containing amine groups, like creatinine. The detection limit of glucose in deionized water was calculated to be 0.02 mg/mL. The developed sensor was finally exposed to human urine spiked with glucose illustrating the coating's ability to re-bind the analyte in complex matrices. While the working concentration range in water was determined to be suitable for glucose monitoring in diabetic individuals at physiological levels, the detection in urine was determined to be 0.12 mg/mL. The decreased performance in urine provided an initial perspective on the difficulties associated with measurements in complex media.


Assuntos
Glucose/análise , Hidrogéis/química , Impressão Molecular/métodos , Ressonância de Plasmônio de Superfície/métodos , Ouro/química , Humanos , Masculino , Nanopartículas/química , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...