Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35203698

RESUMO

Mitochondria are intracellular organelles that utilize nutrients to generate energy in the form of ATP by oxidative phosphorylation. Mitochondrial DNA (mtDNA) in humans is a 16,569 base pair double-stranded circular DNA that encodes for 13 vital proteins of the electron transport chain. Our understanding of the mitochondrial genome's transcription, translation, and maintenance is still emerging, and human pathologies caused by mtDNA dysfunction are widely observed. Additionally, a correlation between declining mitochondrial DNA quality and copy number with organelle dysfunction in aging is well-documented in the literature. Despite tremendous advancements in nuclear gene-editing technologies and their value in translational avenues, our ability to edit mitochondrial DNA is still limited. In this review, we discuss the current therapeutic landscape in addressing the various pathologies that result from mtDNA mutations. We further evaluate existing gene therapy efforts, particularly allotopic expression and its potential to become an indispensable tool for restoring mitochondrial health in disease and aging.

2.
MethodsX ; 8: 101197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434723

RESUMO

We describe here a simple method to enrich mitochondrial fractions from mammalian cells for downstream analyses in the lab. Mitochondria purification involves cell lysis followed by separation of the organelles from the rest of the cellular components. Here, we use detergent to rupture the cell membrane of mammalian cells followed by differential centrifugation to enrich the organelles. Optimum conditions with respect to detergent concentration, time, sample size, and yield are discussed. The method's utility in downstream analyses and ease of processing multiple samples simultaneously is also described. All the reagents in this method can be assembled in-house, are economical, and are comparable, if not superior, to commercially available kits in terms of mitochondrial yield and integrity. • Rapid enrichment of mitochondria from mammalian cells using commonly available reagents. • Multiple samples can be processed simultaneously. • Works over a wide range of sample size (1 million to 100 million cells).

3.
Redox Biol ; 30: 101429, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31981894

RESUMO

Mutations in mitochondrial DNA can be inherited or occur de novo leading to several debilitating myopathies with no curative option and few or no effective treatments. Allotopic expression of recoded mitochondrial genes from the nucleus has potential as a gene therapy strategy for such conditions, however progress in this field has been hampered by technical challenges. Here we employed codon optimization as a tool to re-engineer the protein-coding genes of the human mitochondrial genome for robust, efficient expression from the nucleus. All 13 codon-optimized constructs exhibited substantially higher protein expression than minimally-recoded genes when expressed transiently, and steady-state mRNA levels for optimized gene constructs were 5-180 fold enriched over recoded versions in stably-selected wildtype cells. Eight of thirteen mitochondria-encoded oxidative phosphorylation (OxPhos) proteins maintained protein expression following stable selection, with mitochondrial localization of expression products. We also assessed the utility of this strategy in rescuing mitochondrial disease cell models and found the rescue capacity of allotopic expression constructs to be gene specific. Allotopic expression of codon optimized ATP8 in disease models could restore protein levels and respiratory function, however, rescue of the pathogenic phenotype for another gene, ND1 was only partially successful. These results imply that though codon-optimization alone is not sufficient for functional allotopic expression of most mitochondrial genes, it is an essential consideration in their design.


Assuntos
Biologia Computacional/métodos , Mitocôndrias/genética , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , NADH Desidrogenase/genética , Animais , Uso do Códon , DNA Mitocondrial/genética , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Proteínas Mitocondriais/genética , Modelos Biológicos
4.
Nucleic Acids Res ; 44(19): 9342-9357, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27596602

RESUMO

We explore the possibility of re-engineering mitochondrial genes and expressing them from the nucleus as an approach to rescue defects arising from mitochondrial DNA mutations. We have used a patient cybrid cell line with a single point mutation in the overlap region of the ATP8 and ATP6 genes of the human mitochondrial genome. These cells are null for the ATP8 protein, have significantly lowered ATP6 protein levels and no Complex V function. Nuclear expression of only the ATP8 gene with the ATP5G1 mitochondrial targeting sequence appended restored viability on Krebs cycle substrates and ATP synthesis capabilities but, failed to restore ATP hydrolysis and was insensitive to various inhibitors of oxidative phosphorylation. Co-expressing both ATP8 and ATP6 genes under similar conditions resulted in stable protein expression leading to successful integration into Complex V of the oxidative phosphorylation machinery. Tests for ATP hydrolysis / synthesis, oxygen consumption, glycolytic metabolism and viability all indicate a significant functional rescue of the mutant phenotype (including re-assembly of Complex V) following stable co-expression of ATP8 and ATP6 Thus, we report the stable allotopic expression, import and function of two mitochondria encoded genes, ATP8 and ATP6, resulting in simultaneous rescue of the loss of both mitochondrial proteins.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Transporte/genética , Expressão Gênica , Genes Mitocondriais , Proteínas de Membrana/genética , Mutação , Trifosfato de Adenosina , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Análise Mutacional de DNA , Teste de Complementação Genética , Hidrólise , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras
5.
Radiat Res ; 172(6): 737-45, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19929420

RESUMO

Ionizing radiation induces chronic metabolic oxidative stress and a mutator phenotype in hamster fibroblasts that is mediated by H(2)O(2), but the intracellular source of H(2)O(2) is not well defined. To determine the role of mitochondria in the radiation-induced mutator phenotype, end points of mitochondrial function were determined in unstable (CS-9 and LS-12) and stable (114) hamster fibroblast cell lines derived from GM10115 cells exposed to 10 Gy X rays. Cell lines isolated after irradiation demonstrated a 20-40% loss of mitochondrial membrane potential and an increase in mitochondrial content compared to the parental cell line GM10115. Surprisingly, no differences were observed in steady-state levels of ATP (P > 0.05). Unstable clones demonstrated increased oxygen consumption (two- to threefold; CS-9) and/or increased mitochondrial electron transport chain (ETC) complex II activity (twofold; LS-12). Using Western blot analysis and Blue Native gel electrophoresis, a significant increase in complex II subunit B protein levels was observed in LS-12 cells. Furthermore, immunoprecipitation assays revealed evidence of abnormal complex II assembly in LS-12 cells. Treatment of LS-12 cells with an inhibitor of ETC complex II (thenoyltrifluoroacetone) resulted in significant decreases in the steady-state levels of H(2)O(2) and a 50% reduction in mutation frequency as well as a 16% reduction in CAD gene amplification frequency. These data show that radiation-induced genomic instability was accompanied by evidence of mitochondrial dysfunction leading to increased steady-state levels of H(2)O(2) that contributed to increased mutation frequency and gene amplification. These results support the hypothesis that mitochondrial dysfunction originating from complex II can contribute to radiation-induced genomic instability by increasing steady-state levels of reactive oxygen species.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Instabilidade Genômica , Mitocôndrias/enzimologia , Radiação Ionizante , Animais , Western Blotting , Células CHO , Cricetinae , Cricetulus , Eletroforese em Gel de Poliacrilamida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...