Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Small Methods ; : e2400040, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682590

RESUMO

The study of the structures, applications, and structure-property relationships of atomically precise metal nanoclusters relies heavily on their controlled synthesis. Although great progress has been made in the controlled synthesis of Group 11 (Cu, Ag, Au) metal nanoclusters, the preparation of Pd nanoclusters remains a grand challenge. Herein, a new, simple, and versatile synthetic strategy for the controlled synthesis of Pd nanoclusters is reported with tailorable structures and functions. The synthesis strategy involves the controllable transformations of Pd4(CO)4(CH3COO)4 in air, allowing the discovery of a family of Pd nanoclusters with well-defined structure and high yield. For example, by treating the Pd4(CO)4(CH3COO)4 with 2,2-dipyridine ligands, two clusters of Pd4 and Pd10 whose metal framework describes the growth of vertex-sharing tetrahedra have been selectively isolated. Interestingly, chiral Pd4 nanoclusters can be gained by virtue of customized chiral pyridine-imine ligands, thus representing a pioneering example to shed light on the hierarchical chiral nanostructures of Pd. This synthetic methodology also tolerates a wide variety of ligands and affords phosphine-ligated Pd nanoclusters in a simple way. It is believed that the successful exploration of the synthetic strategy would simulate the research enthusiasm on both the synthesis and application of atomically precise Pd nanoclusters.

2.
Med J Malaysia ; 78(2): 218-224, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36988534

RESUMO

INTRODUCTION: Personal protective equipment (PPE) is crucial in reducing the risk of hospital-acquired COVID-19 as health care workers (HCW)s are highly exposed to the virus during the management of patients with COVID-19. This study assesses the knowledge, attitude and behaviour of the HCWs towards the use of PPE during the COVID-19 pandemic in Malaysia. MATERIALS AND METHODS: This is a nationwide, online-based cross-sectional study utilising a self-administered questionnaire that was distributed to tertiary hospital HCWs in Malaysia, conducted between June and August 2020. RESULTS: Forty-eight physicians, 66 nurses and 79 medical assistants participated in this study. 73.6% correctly recognised PPE components while 40.4% revealed correct hand hygiene practices and approximately 20% had misconceptions about the proper usage of PPE. Although 78.8% disclosed high compliance, 37.3% perceived that PPE protocol interferes with patient care. HCWs have suboptimal knowledge levels of hand hygiene. Age and poor behaviour were the independent predictors of good compliance with PPE. CONCLUSION: This study highlights the necessity to analyse discrepancies in PPE practice among HCWs and its contributing elements. Recognised barriers should be addressed to narrow the gap between knowledge, attitude and behaviour to improve compliance. The study findings would assist in developing an improved disease transmission control and prevention training protocols for HCWs as a preparation for possible infectious outbreaks in the future.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos Transversais , Autorrelato , Pandemias/prevenção & controle , Conhecimentos, Atitudes e Prática em Saúde , Malásia/epidemiologia , Equipamento de Proteção Individual , Pessoal de Saúde
3.
J Phys Chem Lett ; 14(11): 2862-2868, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36920152

RESUMO

This work reports a series of endohedral metallofullerene superatoms [Mg@C20]n, where n = 4, 2, 0, -2, and -4. It was found that Mg transfers virtually all of its 3s electrons to the C20 shell, resulting in the ionic states of Mg2+@[C20]n-2. Detailed calculations revealed that the superatomic electronic configuration of these clusters is 1S21P61D101F4-n. The first nine superatomic molecular orbitals (SAMOs), 1S21P61D10, housed with 18 electrons, are largely based on [C20]n-2 with small contributions from magnesium, while the outmost SAMOs, 1F4-n, with 4 - n extra electrons, reside solely on [C20]n-2. The interaction between the Mg2+ ion and [C20]n-2 was found to be predominately ionic in character. Furthermore, ultraviolet-visible spectra provide a theoretical basis for fingerprinting these clusters. It is hoped that this work will encourage the synthetic pursuit of these smallest superatomic systems.

4.
J Phys Chem Lett ; 13(36): 8455-8461, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36053267

RESUMO

A new type of excimer formation was reported, which stems from an unexpected discovery of a short-lived excited-state dimer of superatomic dimers. In theoretical investigation of the dimer formation, it was found that the physical adsorption states maintain the closed-shell properties of the dimeric units via van der Waals interaction, while the chemical adsorption excited state is a broken-symmetry (BS) state, having a higher energy of about 0.5 eV. Potential energy surface calculations indicate that the short-lived metastable chemical bonding state can transform into energetically lower physical adsorption states by crossing a shallow energy barrier and eventually disintegrate into two ground-state dimers. Since the basic unit is a superatomic cluster, the chemical adsorption state discovered may be called "super-excimer", which opens up a new avenue for the discovery of tailorable excimer materials.

5.
J Am Chem Soc ; 144(24): 10844-10853, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35671335

RESUMO

The complexity of heterogeneous metal catalysts makes it challenging to gain insights into their catalytic mechanisms. Thus, there exists a huge gap between heterogeneous catalysis and organometallic catalysis. With the success in the preparation of highly robust atomically precise metal nanocluster catalysts (i.e., [Au16(NHC-1)5(PA)3Br2]3+ and [Au17(NHC-1)4(PA)4Br4]+, where NHC-1 is a bidentate NHC ligand, and PA is phenylacetylide) with surface organometallic motifs anchored on the metallic core, we demonstrate in this work how the metallic core works synergistically with the surface organometallic motifs to enhance the catalysis. More importantly, the discovery allows the development of highly stable and recyclable heterogeneous metal catalysts to achieve efficient hydroamination of alkynes with an extremely low catalyst dosage (0.002 mol %), helping bridge the gap between heterogeneous and homogeneous metal catalysis. The surface modification of metal nanocatalysts with organometallic motifs provides a new design principle of metal catalysts with enhanced catalysis.

6.
Chem Commun (Camb) ; 58(55): 7670-7673, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35727172

RESUMO

Reported herein is a racemate of a chiral nanocluster [Cu28H20(S2P(OiPr)2)9]-, which has a tetrahedral Cu4 core embedded in a peculiar Cu24 shell. The Cu28H20 framework conforms to idealized C3 symmetry. The positions of the hydrides were determined by a combinatorial use of 2H NMR and SC-XRD, revealing four different coordination modes: face-capping µ3-H, butterfly µ4'-H, tetrahedral µ4-H, and square-pyramidal µ5-H. These coordination modes were authenticated by DFT calculations. Simple empirical rules were developed for assigning the H NMR spectra. One exposed Cu atom from the Cu4 core and 13 exposed surface hydrides are easily accessible and thus may have catalytic functions.

7.
J Obstet Gynaecol Res ; 48(3): 694-702, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35068018

RESUMO

AIM: To explore digital insertion in dorsal recumbent position of 16F, 22F, or 28F catheter bores on insertion failure, duration, and pain in unripe cervix labor induction. METHODS: A randomized trial was performed in a University hospital in Malaysia. Term women scheduled for labor induction, Bishop score ≤ 5, singleton, cephalic presentation, intact membrane, and reassuring pre-induction fetal heart rate tracing were recruited. Women with known gross fetal anomaly, allergy to latex and inability to consent or language difficulty were excluded. Participants were randomized to 16F, 22F, or 28F Foley catheter. Primary outcome was insertion failure and main secondary outcomes were insertion duration and pain (assessed by a Visual Numerical Rating Scale [VNRS] 0-10, higher score more pain). Analysis is done by analysis of variance (ANOVA), Kruskal-Wallis, and chi square test across the three arms and by t test and Mann-Whitney U test for pair wise comparisons. RESULTS: One hundred twenty-seven participants' data were analyzed. The insertion failure 7/43(16%) versus 4/42(10%) versus 5/42(12%), p = 0.64, insertion duration median [IQR] 2.8 [1.8-4.8] versus 2.8 [1.7-3.7] versus 2.8 [1.7-4.3] min, p = 0.68 and insertion pain VNRS mean {SD} 4.2 {2.5} versus 3.4 {2.3} versus 3.6 {2.2}, p = 0.26, insertion to delivery interval 26.0 {9.7} versus 25.6 {9.1} versus 22.8 {7.4} h, p = 0.45, and spontaneous vaginal delivery 20/43 (45%) versus 23/42(55%) versus 25/42(60%), p = 0.48 for 16F versus 22F versus 28F arms, respectively. Pairwise comparisons were not different. CONCLUSION: Foley catheter 16F versus 22F versus 28F resulted in similar digital insertion performance in the dorsal recumbent position for unripe cervix labor induction. CLINICAL TRIAL REGISTRATION: https://doi.org/10.1186/ISRCTN21224268.


Assuntos
Maturidade Cervical , Ocitócicos , Catéteres , Colo do Útero , Feminino , Humanos , Trabalho de Parto Induzido/métodos , Gravidez , Cateterismo Urinário/métodos
8.
ACS Nanosci Au ; 2(6): 520-526, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37101850

RESUMO

Optimizing the synthesis of atomically precise metal nanoclusters by virtue of molecular tools is highly desirable but quite challenging. Herein we report how 19F NMR spectroscopy can be used to guide the high-yield synthesis of N-heterocyclic carbene (NHC)-stabilized gold nanoclusters. In spite of little difference, 19F NMR signals of fluoro-incorporated NHCs (FNHC) are highly sensitive to the tiny change in their surrounding chemical environments with different N-substituents, metals, or anions, thus providing a convenient strategy to discriminate species in reaction mixtures. By using 19F NMR, we first disclosed that the one-pot reduction of FNHC-Au-X (X is halide) yields multiple compounds, including cluster compounds and also a large amount of highly stable [Au(FNHC)2]+ byproduct. The detailed quantitative 19F NMR analyses over the reductive synthesis of NHC-stabilized Au nanoclusters reveal that the formation of the di-NHC complex is deleterious to the high-yield synthesis of NHC-stabilized Au nanoclusters. With the understanding, the reaction kinetic was then slowed by controlling the reduction rate to achieve the high yield of a [Au24(FNHC)14X2H3]3+ nanocluster with a unique structure. The strategy demonstrated in this work is expected to provide an effective tool to guide the high-yield synthesis of organic ligand-stabilized metal nanoclusters.

9.
Small Methods ; 5(3): e2000603, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34927833

RESUMO

A simple and selective synthetic protocol, using (PPh3 )2 CuBH4 as reducing agent, for Cu-containing mixed metal nanoclusters (NCs) is reported. Representative NCs include alkynyl-protected [Ag25 Cu4 (PhCC)12 (PPh3 )12 Cl6 H8 ]3+ (1), thiolate-capped [AuCu14 (SR)12 (PPh3 )6 ]+ (R = 4-flurothiophenol) (2), and phosphine-stabilized [Au9 Cu2 (PPh3 )8 Cl2 ]+ (3), which are fully characterized by single-crystal X-ray diffraction analysis, electrospray ionization mass, nuclear magnetic resonance (1 H, 2 H, 13 C, and 31 P NMR), and optical measurements, respectively. This work demonstrates the advantages of using (PPh3 )2 CuBH4 as a reducing agent in the synthesis of Cu-containing heterometallic NCs in terms of versatility as well as high yield and high purity of the products. This work may open the door to utilizing functional metal borohydride, as a new generation of reducing agent for the simple and selective synthesis of metal NCs.

10.
Angew Chem Int Ed Engl ; 60(41): 22411-22416, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34347339

RESUMO

We report the synthesis and structure of tertiary chiral nanostructures with 100 % optical purity. A novel synthetic strategy, using chiral reducing agent, R and S-BINAPCuBH4 (BINAP is 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl), is developed to access to atomically precise, intrinsically chiral [Au7 Ag6 Cu2 (R- or S-BINAP)3 (SCH2 Ph)6 ]SbF6 nanoclusters in one-pot synthesis. The clusters represent the first tri-metallic superatoms with inherent chirality and fair stability. Both metal distribution (primary) and ligand arrangement (secondary) of the enantiomers exhibited perfect mirror images, and unprecedentedly, the self-assembly driven by the C-H⋅⋅⋅F interaction between the phenyl groups of the superatom moieties and SbF6 - anions induced the formation of bio-mimic left- and right-handed helices, achieving the tertiary chiral nanostructures. DFT calculations revealed the connections between the molecular details and chiral optical activity.

11.
J Am Chem Soc ; 143(27): 10214-10220, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34181853

RESUMO

Many metal clusters are intrinsically chiral but are often synthesized as a racemic mixture. By taking chiral Ag14(SPh(CF3)2)12(PPh3)4(DMF)4 (Ag14) clusters with bulky thiolate ligands as an example, we demonstrate herein an interesting assembly disassembly (ASDS) strategy to obtain the corresponding, optically pure crystals of both homochiral enantiomers, R-Ag14m and S-Ag14m. The ASDS strategy makes use of two bidentate linkers with different chiral configurations, namely, (1R,2R,N1E,N2E)-N1,N2-bis(pyridin-3-ylmethylene)cyclohexane-1,2-diamine (LR) and the corresponding chiral analogue LS. For comparison, we also use the racemic mixture of equimolar of LR and LS (LRS). Three three-dimensional (3D) Ag14-based metal-organic frameworks (MOFs) were characterized by X-ray crystallography to be [Ag14(SPh(CF3)2)12(PPh3)4(LR)2]n (Ag14-LR), [Ag14(SPh(CF3)2)12(PPh3)4(LS)2]n (Ag14-LS), and [Ag14(SPh(CF3)2)12(PPh3)4(LRS)2]n (Ag14-LRS), respectively. As expected, the building blocks in Ag14-LR or Ag14-LS are homochiral R-Ag14 or S-Ag14, respectively. In contrast, Ag14-LRS is achiral and crystallizes with a diamond-like structure containing alternate R-Ag14 and S-Ag14 clusters. During the assembly process, the racemic Ag14 clusters were converted to homochiral building blocks, namely, R-Ag14 for Ag14-LR and S-Ag14 for Ag14-LS. Subsequently, the chiral linkers were removed from the crystals of Ag14-LR and Ag14-LS via hydrolysis with water, and from the disassembled solid material Ag14-DR and Ag14-DS, optically pure enantiomers R-Ag14m and S-Ag14m were obtained. It is hoped that this simple assembly strategy can be used to construct cluster-based chiral assemblage materials and that the subsequent disassembly protocol can be used to obtain optically pure chiral cluster molecules from as-prepared racemic mixtures.

12.
Angew Chem Int Ed Engl ; 60(23): 12897-12903, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33719174

RESUMO

Surface ligands play critical roles in determining the surface properties of metal clusters. However, modulating the properties and controlling the surface structure of clusters through surface-capping-agent displacement is challenging. Herein, [Ag14 (SPh(CF3 )2 )12 (PPh3 )4 (DMF)4 ] (Ag14 -DMF; DMF=N,N-dimethylformamide), with weakly coordinated DMF ligands on surface silver sites, was synthesized by a mixed-ligands strategy. Owing to the high surface reactivity of Ag14 -DMF, the surface ligands are labile, easily dissociated or exchanged by other ligands. Based on the enhanced surface reactivity, easy modulation of the optical properties of Ag14 by reversible "on-off" DMF ligation was realized. When chiral amines were introduced to as-prepared products, all eight surface ligands were replaced by amines and the racemic Ag14 clusters were converted to optically pure homochiral Ag14 clusters as evidenced by circular dichroism (CD) activity and single-crystal X-ray diffraction (SCXRD). This work provides a new insight into modulation of the optical properties of metal clusters and atomically precise homochiral clusters for specific applications are obtained.

13.
Dalton Trans ; 50(11): 4028-4035, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33662080

RESUMO

Three series of copper hydride clusters [Cu8H6L6]2+ (1), [Cu4HX2L4]+ where X- = Cl- (2a), Br- (2b), I- (2c), N3- (2d) and SCN- (2e), and [Cu4HX3L3] where X- = Br- (3b) and I- (3c) (L = 2-(diphenylphosphino)pyridine, dppy) were synthesized and characterized by single-crystal X-Ray crystallography and standard spectroscopic techniques. The metal core of 1, Cu8, can be described as a bicapped octahedron, while those of 2 and 3 series adopt tetrahedral structures. The hydride positions were deduced from difference electron density maps and corroborated by NMR and DFT calculations. For 1, there are two µ4-H-, one each in the two tetrahedral cavities of the two capping atoms and four µ3-H- on the six triangular faces around the waist of the octahedron. For [Cu4HX2L4]+ and [Cu4HX3L3] series, the single µ4-H- resides in the center of the Cu4 tetrahedron. It was found that these three series of copper clusters are intimately connected and can convert from one to another under specific reaction conditions. Their transformation pathways were investigated in detail. Spontaneous resolution to form optically pure enantiomeric single crystals was observed for [Cu4H(SCN)2L4]+ (2e) and [Cu4HBr3L3] (3b). Photoluminescence was observed for [Cu4HX2L4]+, as well as [Cu4HX3L3] with strong emissions from green to yellow regions.

14.
Inorg Chem ; 60(6): 3529-3533, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33615777

RESUMO

Reported herein are the synthesis and structures of two high-nuclearity AuAg nanoclusters, namely, [Au78Ag66(C≡CPh)48Cl8]q- and [Au74Ag60(C≡CPh)40Br12]2-. Both clusters possess a three-concentric-shell Au12@Au42@Ag60 structure. However, the dispositions of the metal atoms, and the ligand coordination modes, of the outermost shells of these clusters are distinctly different. These structural differences reflect the bonding characteristics of the halide ligands. As revealed by density functional theory analysis, these clusters exhibit superatomic electron shell closings at magic numbers of 92 (for q = 4) and 84, respectively, consistent with their spherical shapes. Both clusters exhibit unusual multivalent redox properties.

15.
Angew Chem Int Ed Engl ; 60(7): 3752-3758, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33104265

RESUMO

Deciphering the molecular pictures of the multi-component and non-periodic organic-inorganic interlayer is a grand technical challenge. Here we show that the atomic arrangement of hybrid surface ligands on metal nanoparticles can be precisely quantified through comprehensive characterization of a novel gold cluster, Au44 (i Pr2 -bimy)9 (PA)6 Br8 (1), which features three types of ligands, namely, carbene (1,3-diisopropylbenzimidazolin-2-ylidene, i Pr2 -bimy), alkynyl (phenylacetylide, PA), and halide (Br), respectively. The delicately balanced stereochemical effects and bonding capabilities of the three ligands give rise to peculiar geometrical and electronic structures. Remarkably, despite its complex and highly distorted surface structure, cluster 1 exhibits unusual catalytic properties and yet it is highly stable, both chemically and thermally. Moreover, rich reactive sites on the cluster surface raise the prospect of bio-compatibility (as it can be functionalized to yield water-soluble derivatives) and bio-applications.

16.
Inorg Chem ; 59(13): 8836-8845, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32551557

RESUMO

Three face-centered-cubic (fcc) silver clusters-namely, [Ag14(LA)2(HLA)4(PPh3)8]2- (1), [Ag14(HLA)6(PPh3)8] (2), and [Ag14(NLA)6(PPh3)8] (3)-that are coprotected by lipoic acid (or its amide derivative) and phosphine ligands have been synthesized and structurally characterized (HLA = (±)-α-lipoic acid, LA = (±)-α-lipoate, and NLA = d,l-6,8-thioctamide). These clusters possess two superatomic electrons (the Jellium model), in harmony with a bonding octahedral Ag6 core capped with 8 Ag atoms. Alternatively, the metal framework of 1-3 can be described as adopting a face-centered cubic (fcc) structure elongated along one of the 3-fold axes. The 12 S atoms from the six bioligands bridge the 12 edges of the (fcc) cube, forming a distorted icosahedron. The counterions, solvent or guest molecules play an important role in dictating the crystal lattices of the products. This is the first report of atom-precise structures of Ag-lipoic acid (or its derivatives) clusters, paving the way for further study of structure-property relationships of these bioligand protected metal nanoclusters. Photoluminescence was observed for cluster 3 with complex temperature-dependent emission patterns and efficiencies.

17.
Nat Commun ; 11(1): 2229, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376829

RESUMO

Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold-silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag-Au-Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic p-type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm2 V-1 s-1, and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties.

18.
Chemistry ; 26(38): 8465-8470, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32302026

RESUMO

The conventional synthetic methodology for atomically precise gold nanoclusters by using reduction in solution offers only the thermodynamically most stable nanoclusters. Herein, a solubility-driven isolation strategy is reported to access a metastable gold cluster. The cluster, with the composition of [Au9 (PPh3 )8 ]+ (1), displays an unusual, nearly perfect body-centered cubic (bcc) structure. As revealed by ESI-MS and UV/Vis measurements, the cluster is metastable in solution and converts to the well-known [Au11 (PPh3 )8 Cl2 ]+ (2) within just 90 min. DFT calculations revealed that although both 1 and 2 are eight-electron superatoms, there is a driving force to convert 1 to 2 as shown by the increased cohesion and larger HOMO-LUMO energy gap of 2. The isolation and crystallization of the metastable gold cluster were achieved in a biphasic reaction system in which reduction of gold precursors and crystallization of 1 took place concurrently. This synthetic protocol represents a successful strategy for investigations of other metastable species in metal nanocluster chemistry.

19.
Angew Chem Int Ed Engl ; 58(49): 17731-17735, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31517436

RESUMO

Surface organic ligands play a critical role in stabilizing atomically precise metal nanoclusters in solutions. However, it is still challenging to prepare highly robust ligated metal nanoclusters that are surface-active for liquid-phase catalysis without any pre-treatment. Now, an N-heterocyclic carbene-stabilized Au25 nanocluster with high thermal and air stabilities is presented as a homogenous catalyst for cycloisomerization of alkynyl amines to indoles. The nanocluster, characterized as [Au25 (i Pr2 -bimy)10 Br7 ]2+ (i Pr2 -bimy=1,3-diisopropylbenzimidazolin-2-ylidene) (1), was synthesized by direct reduction of AuSMe2 Cl and i Pr2 -bimyAuBr with NaBH4 in one pot. X-ray crystallization analysis revealed that the cluster comprises two centered Au13 icosahedra sharing a vertex. Cluster 1 is highly stable and can survive in solution at 80 °C for 12 h, which is superior to Au25 nanoclusters passivated with phosphines or thiols. DFT computations reveal the origins of both electronic and thermal stability of 1 and point to the probable catalytic sites. This work provides new insights into the bonding capability of N-heterocyclic carbene to Au in a cluster, and offers an opportunity to probe the catalytic mechanism at the atomic level.

20.
J Am Chem Soc ; 141(30): 11905-11911, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31294970

RESUMO

No formation of bulk silver hydride has been reported. Until very recently, only a few silver nanoclusters containing hydrides have been successfully prepared. However, due to the lack of effective techniques and also poor stability of hydride-containing Ag nanoclusters, the identification of hydrides' location within Ag nanoclusters is challenging and not yet achieved, although some successes have been reported on clusters of several Ag atoms. In this work, we report a detailed structural and spectroscopic characterization of the [Ag40(DMBT)24(PPh3)8H12]2+ (Ag40H12) cluster (DMBT = 2,4-dimethylbenzenethiol). The metal framework consists of three concentric shells of Ag8@Ag24@Ag8, which can be described as (ν1-cube)@(truncated-ν3-octahedron)@(ν2-cube), respectively. The presence of 12 hydrides in each cluster was systematically identified by various techniques. Based on a detailed analysis of the structural features and 1H and 2H NMR spectra, the positions of the 12 hydrides were determined to be residing on the 12 edges of the cubic core. As a result, the electron count of the Ag40 cluster is a two-electron superatomic system instead of a 14-electron system. Moreover, based on our DFT calculations and experimental probes, it was demonstrated that the 12 hydrides play a crucial role in stabilizing both the electronic and geometric structure of the Ag40H12 cluster. The successful synthesis of stable hydride-containing Ag nanoclusters and the identification of hydride positions are expected to simulate research attention on both synthesis and application of hydride-containing Ag nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...