Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Virol Sin ; 39(2): 218-227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316363

RESUMO

The SARS-CoV-2 Omicron variants are notorious for their transmissibility, but little is known about their subgenomic RNA (sgRNA) expression. This study applied RNA-seq to delineate the quantitative and qualitative profiles of canonical sgRNA of 118 respiratory samples collected from patients infected with Omicron BA.2 and compared with 338 patients infected with non-variant of concern (non-VOC)-D614G. A unique characteristic profile depicted by the relative abundance of 9 canonical sgRNAs was reproduced by both BA.2 and non-VOC-D614G regardless of host gender, age and presence of pneumonia. Remarkably, such profile was lost in samples with low viral load, suggesting a potential application of sgRNA pattern to indicate viral activity of individual patient at a specific time point. A characteristic qualitative profile of canonical sgRNAs was also reproduced by both BA.2 and non-VOC-D614G. The presence of a full set of canonical sgRNAs carried a coherent correlation with crude viral load (AUC â€‹= â€‹0.91, 95% CI 0.88-0.94), and sgRNA ORF7b was identified to be the best surrogate marker allowing feasible routine application in characterizing the infection status of individual patient. Further potentials in using sgRNA as a target for vaccine and antiviral development are worth pursuing.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , Carga Viral , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , RNA Viral/genética , COVID-19/virologia , COVID-19/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Genoma Viral/genética , Adulto Jovem , RNA Subgenômico
2.
J Med Virol ; 95(12): e29315, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38115222

RESUMO

Human papillomavirus (HPV) infections are a leading cause of viral-induced malignancies worldwide, with a prominent association with cervical and head and neck cancers. The pivotal role of HPV oncoproteins, E5, E6, and E7, in manipulating cellular events, which contribute to viral pathogenesis in various ways, has been extensively documented. This article reviews the influence of HPV oncoproteins on cellular signaling pathways within the host cell, shedding light on the underlying molecular mechanisms. A comprehensive understanding of these molecular alterations is essential for the development of targeted therapies and strategies to combat HPV-induced premalignancies and prevent their progress to cancer. Furthermore, this review underscores the intricate interplay between HPV oncoproteins and some of the most important cellular signaling pathways: Notch, Wnt/ß-catenin, MAPK, JAK/STAT, and PI3K AKT/mTOR. The treatment efficacies of the currently available inhibitors on these pathways in an HPV-positive context are also discussed. This review also highlights the importance of continued research to advance our knowledge and enhance therapeutic interventions for HPV-associated diseases.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/tratamento farmacológico , Proteínas E7 de Papillomavirus
3.
Cell Mol Life Sci ; 80(10): 278, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682346

RESUMO

Human papillomavirus (HPV) encoded E7 oncoprotein plays an important role in supporting the viral productive cycle and inducing cancer phenotypes. The ability of E7 to exercise these functions, partly, depends upon its steady-state level. HPV manipulates the host de-ubiquitination pathway to maintain the stability of its viral proteins. In this study, we uncovered that HPV interacts with the host ubiquitin specific protease 7 (USP7), a universal de-ubiquitinating enzyme, leading to the stabilization of E7 oncoprotein. We observed that HPV16E7 complexes with USP7 via the E7-CR3 domain, and this E7-USP7 complex exists predominantly in the nucleus. Our results showed that USP7 stabilizes and prolongs the half-life of HPV16E7 by antagonizing ubiquitination and proteasomal degradation. Consistently, when we inhibited USP7 activity using HBX 19818, HPV16E7 protein level was reduced and its turnover was increased. We also provide evidence that HBX 19818-induced USP7 inhibition can halt HPV-mediated carcinogenesis, including cell proliferation, invasion, migration and transformation. These findings indicate that USP7 plays an essential role in stabilizing E7. The specific and potent inhibitory effects of HBX 19818 on HPV-induced carcinogenesis provide a molecular insight, suggesting the potential of targeting USP7 as a new therapeutic approach for the treatment of HPV-associated cancers.


Assuntos
Infecções por Papillomavirus , Humanos , Peptidase 7 Específica de Ubiquitina , Carcinogênese , Núcleo Celular , Proliferação de Células , Papillomavirus Humano
4.
Cancers (Basel) ; 15(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37173932

RESUMO

The human papillomavirus E6 and E7 oncoproteins interact with a different subset of host proteins, leading to dysregulation of the apoptotic, cell cycle, and signaling pathways. In this study, we identified, for the first time, that Aurora kinase B (AurB) is a bona fide interacting partner of E6. We systematically characterized the AurB-E6 complex formation and its consequences in carcinogenesis using a series of in vitro and cell-based assays. We also assessed the efficacy of Aurora kinase inhibitors in halting HPV-mediated carcinogenesis using in vitro and in vivo models. We showed that AurB activity was elevated in HPV-positive cells, and this correlated positively with the E6 protein level. E6 interacted directly with AurB in the nucleus or mitotic cells. A previously unidentified region of E6, located upstream of C-terminal E6-PBM, was important for AurB-E6 complex formation. AurB-E6 complex led to reduced AurB kinase activity. However, the AurB-E6 complex increased the hTERT protein level and its telomerase activity. On the other hand, AurB inhibition led to the inhibition of telomerase activity, cell proliferation, and tumor formation, even though this may occur in an HPV-independent manner. In summary, this study dissected the molecular mechanism of how E6 recruits AurB to induce cell immortalization and proliferation, leading to the eventual cancer development. Our findings revealed that the treatment of AZD1152 exerted a non-specific anti-tumor effect. Hence, a continuous effort to seek a specific and selective inhibitor that can halt HPV-mediated carcinogenesis should be warranted.

5.
J Virol ; 97(2): e0187222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36715516

RESUMO

The expression of human papillomavirus (HPV) oncoproteins perturbed multiple cellular events of the host cells, leading to the formation of cancer phenotypes. Our current and previous studies indicated that Aurora kinase A (AurA), a mitotic regulator that is often aberrantly expressed in human cancers, is preferentially bound to E6-encoded by cancer-causing HPV. AurA is believed to be important for the proliferation and survival of HPV-positive cells. Nonetheless, the interaction between AurA and E6, and the mechanism of how this association is involved in carcinogenesis, have not been elucidated clearly. Hence, we performed a series of biochemical assays to characterize the AurA-E6 association and complex formation. We found the C-terminus of E6, upstream of the PDZ binding motif of E6, is important to forming the AurA-E6 complex in the nucleus. We also showed that the expression level of E6 corresponded positively with AurA expression. Meanwhile, the functional consequences of the AurA-E6 association to AurA kinase function and host cellular events were also delineated. Intriguingly, we revealed that AurA-E6 association regulated the expression of cyclin E and phosphor-Histone H3, which are involved in G1/S and mitotic phases of the cell cycle, respectively. Depletion of AurA also reduced the invasive ability of HPV-positive cells. AurA inhibition may not be sufficient to reduce the oncogenic potential exerted by E6. Altogether, our study unleashed the mechanism of how HPVE6 deploy AurA to promote cancer phenotypes, particularly through dysregulation of cell cycle checkpoints and suggests that the AurA-E6 complex possesses a therapeutic value. IMPORTANCE We unveiled the mechanism of how HPV employs Aurora kinase A (AurA) of host cells to exert its oncogenic capability synergistically. We systematically characterized the mode of interaction between E6-encoded by cancer-causing HPV and AurA. Then, we delineated the consequences of AurA-E6 complex formation on AurA kinase function and changes to cellular events at molecular levels. Using a cell-based approach, we unleashed that disruption of AurA-E6 association can halt cancer phenotype exhibited by HPV-positive cancer cells. Our findings are vital for the designing of state-of-the-art therapies for HPV-associated cancers.


Assuntos
Aurora Quinase A , Papillomavirus Humano , Neoplasias , Infecções por Papillomavirus , Proteínas do Envelope Viral , Humanos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Carcinogênese/patologia , Papillomavirus Humano/genética , Papillomavirus Humano/metabolismo , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/virologia , Proteínas do Envelope Viral/metabolismo , Regulação Viral da Expressão Gênica , Neoplasias/etiologia , Neoplasias/fisiopatologia , Neoplasias/virologia
6.
Microbiol Spectr ; 10(6): e0219622, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36350127

RESUMO

Numerous studies have reported dysbiosis in the naso- and/or oro-pharyngeal microbiota of COVID-19 patients compared with healthy individuals; however, only a few small-scale studies have also included a disease control group. In this study, we characterized and compared the bacterial communities of pooled nasopharyngeal and throat swabs from hospitalized COVID-19 patients (n = 76), hospitalized non-COVID-19 patients with respiratory symptoms or related illnesses (n = 69), and local community controls (n = 76) using 16S rRNA gene V3-V4 amplicon sequencing. None of the subjects received antimicrobial therapy within 2 weeks prior to sample collection. Both COVID-19 and non-COVID-19 hospitalized patients differed in the composition, alpha and beta diversity, and metabolic potential of the naso-oropharyngeal microbiota compared with local controls. However, the microbial communities in the two hospitalized patient groups did not differ significantly from each other. Differential abundance analysis revealed the enrichment of nine bacterial genera in the COVID-19 patients compared with local controls; however, six of them were also enriched in the non-COVID-19 patients. Bacterial genera uniquely enriched in the COVID-19 patients included Alloprevotella and Solobacterium. In contrast, Mogibacterium and Lactococcus were dramatically decreased in COVID-19 patients only. Association analysis revealed that Alloprevotella in COVID-19 patients was positively correlated with the level of the inflammation biomarker C-reactive protein. Our findings reveal a limited impact of SARS-CoV-2 on the naso-oropharyngeal microbiota in hospitalized patients and suggest that Alloprevotella and Solobacterium are more specific biomarkers for COVID-19 detection. IMPORTANCE Our results showed that while both COVID-19 and non-COVID-19 hospitalized patients differed in the composition, alpha and beta diversity, and metabolic potential of the naso-oropharyngeal microbiota compared with local controls, the microbial communities in the two hospitalized patient groups did not differ significantly from each other, indicating a limited impact of SARS-CoV-2 on the naso-oropharyngeal microbiota in hospitalized patients. Besides, we identified Alloprevotella and Solobacterium as bacterial genera uniquely enriched in COVID-19 patients, which may serve as more specific biomarkers for COVID-19 detection.


Assuntos
COVID-19 , Microbiota , Humanos , SARS-CoV-2/genética , RNA Ribossômico 16S/genética , Orofaringe/microbiologia , Microbiota/genética , Bactérias/genética
7.
Oral Oncol ; 135: 106245, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375420

RESUMO

OBJECTIVE: To investigate the interplay among the oral microbiota, HPV infection, traditional risk factors and patient outcomes in head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS: A multi-center study of HNSCC patients with paired tumor and control tissues. We characterized the oral microbiota and HPV infection of tissues in 166 Chinese adults by sequencing the bacterial 16S rRNA V3-V4 and HPV L1 regions, respectively, and examined the associations among the oral microbiota, HPV and clinical features. RESULTS: A total of 15.7% of the surveyed HNSCC patients were positive for HPV DNA, with infection rates varying from 66.7% in oropharyngeal SCC to 10.4% in oral cavity SCC (OSCC). No HPV infection was detected in the surveyed hypopharyngeal SCC. HPV16 was largely the predominant type. HPV infection in non-OSCC, especially oropharyngeal SCC, was associated with advanced N stage and superior survival outcomes. Oral microbiota dysbiosis was observed in HNSCC tumors, with differentially abundant taxa mainly associated with HNSCC subtype, T stage, survival/relapse, HPV infection, and smoking. Notably, the enrichment of Fusobacterium in tumor tissues of OSCC patients was associated with no smoking, early T stage, early N stage, and better 3-year disease-specific survival. CONCLUSION: Our findings underscore the involvement of oral microbiota dysbiosis in OSCC pathogenesis, Fusobacterium is involved with improved OSCC patient outcomes, especially in patients lacking traditional risk factors. Understanding the complex interactions among the oral microbiota, HPV infection and other risk factors for HNSCC will provide important insights into the pathogenesis of HNSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Microbiota , Neoplasias Bucais , Infecções por Papillomavirus , Adulto , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/complicações , RNA Ribossômico 16S/genética , Disbiose/complicações , Recidiva Local de Neoplasia , Carcinoma de Células Escamosas/patologia , Papillomaviridae/genética
8.
Cancers (Basel) ; 14(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35740578

RESUMO

Cancer arising from the uterine cervix is the fourth most common cause of cancer death among women worldwide. Almost 90% of cervical cancer mortality has occurred in low- and middle-income countries. One of the major aetiologies contributing to cervical cancer is the persistent infection by the cancer-causing types of the human papillomavirus. The disease is preventable if the premalignant lesion is detected early and managed effectively. In this review, we outlined the standard guidelines that have been introduced and implemented worldwide for decades, including the cytology, the HPV detection and genotyping, and the immunostaining of surrogate markers. In addition, the staging system used to classify the premalignancy and malignancy of the uterine cervix, as well as the safety and efficacy of the various treatment modalities in clinical trials for cervical cancers, are also discussed. In this millennial world, the advancements in computer-aided technology, including robotic modules and artificial intelligence (AI), are also incorporated into the screening, diagnostic, and treatment platforms. These innovations reduce the dependence on specialists and technologists, as well as the work burden and time incurred for sample processing. However, concerns over the practicality of these advancements remain, due to the high cost, lack of flexibility, and the judgment of a trained professional that is currently not replaceable by a machine.

9.
J Clin Virol Plus ; 2(1): 100062, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35262035

RESUMO

Objectives: Little is known whether differences exist in virus shedding, immune and inflammatory response related to SARS-CoV-2 in people living with human immunodeficiency virus (PLWH). We assessed viral RNA and cytokine profiles of HIV and SARS-CoV-2 coinfection in Hong Kong. Methods: PLWH hospitalized with SARS-CoV-2 infection in Hong Kong were included, compared with age-matched and disease severity-matched SARS-CoV-2 infected controls (ratio of 1:5) from February 1st 2020 to July 31st 2020. SARS-CoV-2 infection was confirmed by public health laboratory and virus concentration was quantified by an in-house real-time reverse transcription-quantitative polymerase chain reaction. A panel of cytokines and chemokines were performed. Results: HIV patients had a similar respiratory shedding profile compared to controls. Duration of faecal shedding of patient A, B, C and D were at least 9, 10, 33, and 11 days, respectively. HIV patients had lower plasma levels of IL-10 and NT-pro-BNP. All 4 PLWH cases showed seroconversion to SARS-CoV-2 with anti-SARS-CoV-2 S antibodies detected in serum collected between day 18 and 30 after symptom onset. Conclusions: PLWH behaves similarly with HIV-negative controls in respiratory viral load, but with decrease in IL-10 and NT-proBNP. PLWH may have a lower risk of immunostimulatory effect due to lower IL-10.

10.
Microbiol Spectr ; 10(2): e0018222, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35311586

RESUMO

SARS-CoV-2 transcribes a set of subgenomic RNAs (sgRNAs) essential for the translation of structural and accessory proteins to sustain its life cycle. We applied RNA-seq on 375 respiratory samples from individual COVID-19 patients and revealed that the majority of the sgRNAs were canonical transcripts with N being the most abundant (36.2%), followed by S (11.6%), open reading frame 7a (ORF7a; 10.3%), M (8.4%), ORF3a (7.9%), ORF8 (6.0%), E (4.6%), ORF6 (2.5%), and ORF7b (0.3%); but ORF10 was not detected. The profile of most sgRNAs, except N, showed an independent association with viral load, time of specimen collection after onset, age of the patient, and S-614D/G variant with ORF7b and then ORF6 being the most sensitive to changes in these characteristics. Monitoring of 124 serial samples from 10 patients using sgRNA-specific real-time RT-PCR revealed a potential of adopting sgRNA as a marker of viral activity. Respiratory samples harboring a full set of canonical sgRNAs were mainly collected early within 1 to 2 weeks from onset, and most of the stool samples (90%) were negative for sgRNAs despite testing positive by diagnostic PCR targeting genomic RNA. ORF7b was the first to become undetectable and again being the most sensitive surrogate marker for a full set of canonical sgRNAs in clinical samples. The potential of using sgRNA to monitor viral activity and progression of SARS-CoV-2 infection, and hence as one of the objective indicators to triage patients for isolation and treatment should be considered. IMPORTANCE Attempts to use subgenomic RNAs (sgRNAs) of SARS-CoV-2 to identify active infection of COVID-19 have produced diverse results. In this work, we applied next-generation sequencing and RT-PCR to profile the full spectrum of SARS-CoV-2 sgRNAs in a large cohort of respiratory and stool samples collected throughout infection. Numerous known and novel discontinuous transcription events potentially encoding full-length, deleted and frameshift proteins were observed. In particular, the expression profile of canonical sgRNAs was associated with genomic RNA level and clinical characteristics. Our study found sgRNAs as potential biomarkers for monitoring infectivity and progression of SARS-CoV-2 infection, which provides an alternative target for the management and treatment of COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Fases de Leitura Aberta , RNA Viral/genética , SARS-CoV-2/genética , Carga Viral
11.
Tumour Virus Res ; 13: 200231, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34920177

RESUMO

Oesophageal carcinoma ranks the sixth leading cause of cancer death and affected 544,000 - 604,000 people in 2020. Patients often presented with a poor cancer prognosis with a low survival rate of 15-25%. Depending upon the cell type, oesophageal carcinoma is categorised into oesophageal squamous cell carcinoma (ESCC) and oesophageal adenocarcinoma (EAC). ESCC is predominantly reported in developing countries, while EAC is more common in developed countries. Aside from the presence of exogenous co-factors, such as cigarette smoking, alcohol consumption, obesity, gastroesophageal reflux disease (GERD); infection with oncogenic viruses is suspected to be one of the major factors contributing to EC development. Oncogenic viruses, including human papillomavirus (HPV), Epstein Barr virus (EBV), Cytomegalovirus (CMV) and Herpes Simplex Virus (HSV) have been detected in various proportions of EC samples. Nonetheless, their aetiological roles in EC remain debatable. In this review, we garnered previous studies that focus on the association between oncogenic viruses and EC. Among these oncogenic viruses, HPV appears to have a stronger association with EC than the others. In addition, we also discuss the pros and cons of the treatment regimens to treat EC patients, including immunotherapy, chemo- and chemoradiotherapy, and their efficacy.


Assuntos
Alphapapillomavirus , Carcinoma , Infecções por Vírus Epstein-Barr , Infecções por Papillomavirus , Carcinoma/complicações , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/genética , Humanos , Papillomaviridae/genética , Infecções por Papillomavirus/complicações , Prevalência
12.
mBio ; 12(5): e0268721, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34700382

RESUMO

SARS-CoV-2 is a positive-sense single-stranded RNA virus with emerging mutations, especially on the Spike glycoprotein (S protein). To delineate the genomic diversity in association with geographic dispersion of SARS-CoV-2 variant lineages, we collected 939,591 complete S protein sequences deposited in the Global Initiative on Sharing All Influenza Data (GISAID) from December 2019 to April 2021. An exponential emergence of S protein variants was observed since October 2020 when the four major variants of concern (VOCs), namely, alpha (α) (B.1.1.7), beta (ß) (B.1.351), gamma (γ) (P.1), and delta (δ) (B.1.617), started to circulate in various communities. We found that residues 452, 477, 484, and 501, the 4 key amino acids located in the hACE2 binding domain of S protein, were under positive selection. Through in silico protein structure prediction and immunoinformatics tools, we discovered D614G is the key determinant to S protein conformational change, while variations of N439K, T478I, E484K, and N501Y in S1-RBD also had an impact on S protein binding affinity to hACE2 and antigenicity. Finally, we predicted that the yet-to-be-identified hypothetical N439S, T478S, and N501K mutations could confer an even greater binding affinity to hACE2 and evade host immune surveillance more efficiently than the respective native variants. This study documented the evolution of SARS-CoV-2 S protein over the first 16 months of the pandemic and identified several key amino acid changes that are predicted to confer a substantial impact on transmission and immunological recognition. These findings convey crucial information to sequence-based surveillance programs and the design of next-generation vaccines. IMPORTANCE Our study showed the global distribution of SARS-CoV-2 S protein variants from January 2020 to the end of April 2021. We highlighted the key amino acids of S protein subjected to positive selection. Using computer-aided approaches, we predicted the impact of the amino acid variations in S protein on viral infectivity and antigenicity. We also predicted the potential amino acid mutations that could arise in favor of SARS-CoV-2 virulence. These findings are vital for vaccine designing and anti-SARS-CoV-2 drug discovery in an effort to combat COVID-19.


Assuntos
SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/virologia , Humanos , Simulação de Dinâmica Molecular , Filogenia , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/genética , Virulência
13.
Cancers (Basel) ; 13(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070706

RESUMO

Human papillomavirus (HPV) infection remains one of the most prominent cancer-causing DNA viruses, contributing to approximately 5% of human cancers. While association between HPV and cervical cancers has been well-established, evidence on the attribution of head and neck cancers (HNC) to HPV have been increasing in recent years. Among the cancer-causing HPV genotypes, HPV16 and 18 remain the major contributors to cancers across the globe. Nonetheless, the distribution of HPV genotypes in ethnically, geographically, and socio-economically diverse East, Southeast, and South Asia may differ from other parts of the world. In this review, we garner and provide updated insight into various aspects of HPV reported in recent years (2015-2021) in these regions. We included: (i) the HPV genotypes detected in normal cancers of the uterine cervix and head and neck, as well as the distribution of the HPV genotypes by geography and age groups; (ii) the laboratory diagnostic methods and treatment regimens used within these regions; and (iii) the oncogenic properties of HPV prototypes and their variants contributing to carcinogenesis. More importantly, we also unveil the similarities and discrepancies between these aspects, the areas lacking study, and the challenges faced in HPV studies.

14.
Gut ; 70(2): 276-284, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32690600

RESUMO

OBJECTIVE: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was detected in faeces of patients with COVID-19, the activity and infectivity of the virus in the GI tract during disease course is largely unknown. We investigated temporal transcriptional activity of SARS-CoV-2 and its association with longitudinal faecal microbiome alterations in patients with COVID-19. DESIGN: We performed RNA shotgun metagenomics sequencing on serial faecal viral extractions from 15 hospitalised patients with COVID-19. Sequencing coverage of the SARS-CoV-2 genome was quantified. We assessed faecal microbiome composition and microbiome functionality in association with signatures of faecal SARS-CoV-2 infectivity. RESULTS: Seven (46.7%) of 15 patients with COVID-19 had stool positivity for SARS-CoV-2 by viral RNA metagenomic sequencing. Even in the absence of GI manifestations, all seven patients showed strikingly higher coverage (p=0.0261) and density (p=0.0094) of the 3' vs 5' end of SARS-CoV-2 genome in their faecal viral metagenome profile. Faecal viral metagenome of three patients continued to display active viral infection signature (higher 3' vs 5' end coverage) up to 6 days after clearance of SARS-CoV-2 from respiratory samples. Faecal samples with signature of high SARS-CoV-2 infectivity had higher abundances of bacterial species Collinsella aerofaciens, Collinsella tanakaei, Streptococcus infantis, Morganella morganii, and higher functional capacity for nucleotide de novo biosynthesis, amino acid biosynthesis and glycolysis, whereas faecal samples with signature of low-to-none SARS-CoV-2 infectivity had higher abundances of short-chain fatty acid producing bacteria, Parabacteroides merdae, Bacteroides stercoris, Alistipes onderdonkii and Lachnospiraceae bacterium 1_1_57FAA. CONCLUSION: This pilot study provides evidence for active and prolonged 'quiescent' GI infection even in the absence of GI manifestations and after recovery from respiratory infection of SARS-CoV-2. Gut microbiota of patients with active SARS-CoV-2 GI infection was characterised by enrichment of opportunistic pathogens, loss of salutary bacteria and increased functional capacity for nucleotide and amino acid biosynthesis and carbohydrate metabolism.


Assuntos
COVID-19/complicações , COVID-19/microbiologia , Fezes/microbiologia , Fezes/virologia , SARS-CoV-2/isolamento & purificação , Adulto , Idoso , COVID-19/diagnóstico , Feminino , Microbioma Gastrointestinal , Hospitalização , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Adulto Jovem
15.
Cancers (Basel) ; 12(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218162

RESUMO

The role of oral microbiota in head and neck squamous cell carcinoma (HNSCC) is poorly understood. Here we sought to evaluate the association of the bacterial microbiome with host gene methylation and patient outcomes, and to explore its potential as a biomarker for early detection or intervention. Here we performed 16S rRNA gene amplicon sequencing in sixty-eight HNSCC patients across both tissue and oral rinse samples to identify oral bacteria with differential abundance between HNSCC and controls. A subset of thirty-one pairs of HNSCC tumor tissues and the adjacent normal tissues were characterized for host gene methylation profile using bisulfite capture sequencing. We observed significant enrichments of Fusobacterium and Peptostreptococcus in HNSCC tumor tissues when compared to the adjacent normal tissues, and in HNSCC oral rinses when compared to healthy subjects, while ten other bacterial genera were largely depleted. These HNSCC-related bacteria were discriminative for HNSCC and controls with area under the receiver operating curves (AUCs) of 0.84 and 0.86 in tissue and oral rinse samples, respectively. Moreover, Fusobacterium nucleatum abundance in HNSCC cases was strongly associated with non-smokers, lower tumor stage, lower rate of recurrence, and improved disease-specific survival. An integrative analysis identified that enrichment of F. nucleatum was associated with host gene promoter methylation, including hypermethylation of tumor suppressor genes LXN and SMARCA2, for which gene expressions were downregulated in the HNSCC cohort from The Cancer Genome Atlas. In conclusion, we identified a taxonomically defined microbial consortium associated with HNSCC that may have clinical potential regarding biomarkers for early detection or intervention. Host-microbe interactions between F. nucleatum enrichment and clinical outcomes or host gene methylation imply a potential role of F. nucleatum as a pro-inflammatory driver in initiating HNSCC without traditional risk factors, which warrants further investigation for the underlying mechanisms.

16.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996427

RESUMO

Human papillomavirus (HPV) type 58 is the third most commonly detected HPV type in cervical cancer among Eastern Asians. Our previous international epidemiological studies revealed that HPV58 carrying an E7 natural variant, T20I/G63S (designated V1), was associated with a higher risk of cervical cancer. We recently showed that V1 possesses a greater ability to immortalize and transform primary cells, as well as degrading pRB more effectively, than the prototype and other common variants. In this study, we performed a series of phenotypic and molecular assays using physiologically relevant in vitro and in vivo models to compare the oncogenicity of V1 with that of the prototype and other common natural variants. Through activation of the AKT and K-Ras/extracellular signal-regulated kinase (ERK) signaling pathways, V1 consistently showed greater oncogenicity than the prototype and other variants, as demonstrated by increased cell proliferation, migration, and invasion, as well as induction of larger tumors in athymic nude mice. This study complements our previous epidemiological and molecular observations pinpointing the higher oncogenicity of V1 than that of the prototype and all other common variants. Since V1 is more commonly found in eastern Asia, our report provides insight into the design of HPV screening assays and selection of components for HPV vaccines in this region.IMPORTANCE Epidemiological studies have revealed that a wild-type variant of HPV58 carrying an E7 variation, T20I/G63S (V1), is associated with a higher risk of cervical cancer. We previously reported that this increased oncogenicity could be the result of the virus's greater ability to degrade pRB, thereby leading to an increased ability to grow in an anchorage-independent manner. In addition to this, this report further showed that this HPV variant induced activation of the AKT and K-Ras/ERK signaling pathways, thereby explaining its genuine oncogenicity in promoting cell proliferation, migration, invasion, and formation of tumors, all to a greater extent than the prototype HPV58 and other common variants.


Assuntos
Papillomaviridae/classificação , Papillomaviridae/fisiologia , Infecções por Papillomavirus/virologia , Animais , Povo Asiático , Proliferação de Células , Modelos Animais de Doenças , Feminino , Variação Genética , Humanos , Camundongos , Camundongos Nus , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Vacinas contra Papillomavirus , Ratos , Neoplasias do Colo do Útero/virologia
17.
BMC Cancer ; 19(1): 1211, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830929

RESUMO

BACKGROUND: Increasing evidence indicates an etiological role of human papillomavirus (HPV) in head and neck cancers, particularly oropharyngeal squamous cell carcinoma (OPSCC). However, the association between HPV and other cancers, including esophageal and tongue remains unclear. This study delineated the molecular characteristics of HPV18 E6 and E7 in esophageal (EC109 and EC9706) and tongue (Tca83) cancer cell lines with reference to cervical cancer (HeLa). METHODS: We analysed the HPV transcription profiles of esophageal and tongue cancer cells through Next-generation RNA sequencing, and the role of HPV18 E6 and E7 in these cells was assessed via siRNA approach, Western blotting and immunofluorescence assays. RESULTS: Overall, the HPV transcription profiles of esophageal and tongue cancer cells mimicked that of cervical cancer cells, with notable disruption of E2, and expression of E6, spliced E6 (E6*), E7, E1 and L1 transcripts. As with cervical cancer cells, p53 and its downstream transactivation target, p21, were found to be the major targets of E6 in esophageal and tongue cancer cell lines. Intriguingly, E7 preferentially targeted p130 in the two esophageal cancer cell lines, instead of pRb as in cervical cancer. Tca83 exhibited an E7 to E6 transcript ratio comparable to HeLa (cervix), targeted the ERK1/2 and MMP2 pathways, and was dependent on E6 and E7 to survive and proliferate. In contrast, both the esophageal cancer cell lines were distinct from HeLa in these aspects. CONCLUSIONS: This is the first study that delineates transcript expression and protein interaction of HPV18 E6 and E7 in esophageal and tongue cancer cell lines, suggesting that HPV plays a role in inducing these cancers, albeit via distinct pathways than those observed in cervical cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neoplasias Esofágicas/virologia , Carcinoma de Células Escamosas do Esôfago/virologia , Papillomavirus Humano 18/fisiologia , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Neoplasias da Língua/virologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Células HeLa , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/metabolismo , Humanos , Proteínas Oncogênicas Virais/biossíntese , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/biossíntese , Proteínas E7 de Papillomavirus/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia
18.
BMC Cancer ; 19(1): 1255, 2019 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-31884950

RESUMO

Following publication of the original article [1], the authors reported that during the production process, Table 1 was omitted.

19.
BMC Cancer ; 19(1): 138, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744599

RESUMO

BACKGROUND: Human papillomavirus (HPV) is an etiological agent of cervical cancer. Yet co-factors are believed to be involved in HPV-mediated carcinogenesis. Polycyclic aromatic hydrocarbons (PAHs) are considered as one of these co-factors. Epidemiologic studies have associated high PAH exposure with increased risk for cancer development. To date, many studies focus on benzo[a]pyrene, however, the role of other PAHs should not be neglected. This study aimed to compare the potential of different PAHs as a co-factor in HPV-mediated carcinogenesis, and to investigate the possible mechanisms involved. METHODS: The effect of 17 PAHs on high-risk HPV (HPV16) were examined in this study. HPV16 E7 oncogene was expressed in primary cells extracted from baby rat kidney and treated with PAHs. The co-transforming ability of PAHs were measured by colony formation index according to the number and size of transformed colonies. Effects of PAHs on proliferation of HPV-null (C33A) and -infected (CaSki) were examined using CCK-8 assay. Wound healing assay and matrigel invasion chambers were used to investigate effects of PAHs on cell motility and invasivion of HPV-null (MCF7, C33A) and -infected (SiHa) cells. RESULTS: Benzo[a]pyrene (BaP), dibenz[a,h]anthracene (DBA) and indeno[1,2,3-cd]pyrene (IDP) showed the greatest co-transforming potential in the baby rat kidney cell system. Short-term exposure to BaP, DBA, IDP and pyrene (PR) did not affect proliferation of C33A or CaSki cells, however, long-term exposure of these four PAHs led to dramatic increase in growth rate of CaSki cells by 120-140%. Besides, exposure of PAHs has an effect on cell motility and invasiveness of C33A and SiHa cells, but not for MCF7 cells. Exposure of BaP and DBA enhanced migration (1.26 to 1.40-fold) and invasion (1.68 to 1.94-fold) capacity of C33A cells. Intriguingly, exposure of all four types of PAHs boosted the migration (1.12 to 1.28-fold) and invasion (1.26 to 1.40-fold) capacity of SiHa cells. CONCLUSIONS: Our results indicate that exposure to PAHs can be a key co-factor in HPV-related cancer development. They could act on all three stages, namely initiation, promotion and progression. Further study is needed to unveil the mechanisms by which PAHs interact with HPV to cause malignancy.


Assuntos
Cocarcinogênese , Neoplasias/etiologia , Papillomaviridae , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/virologia , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Viral , Humanos , Papillomaviridae/fisiologia , Proteínas E7 de Papillomavirus/genética
20.
J Gen Virol ; 100(3): 484-496, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30676312

RESUMO

Human papillomavirus (HPV) infection contributes to virtually all cases of cervical cancer, the fourth most common cancer affecting women worldwide. The oncogenicity of HPV is mainly attributable to the E6 and E7 oncoproteins. HPV-52 is the seventh most common HPV type globally, but it has a remarkably high prevalence in East Asia. In previous studies it has been speculated that the oncogenicity might vary among different HPV-52 variants. In the present study, we compared the oncogenicity of E6 derived from the HPV-52 prototype and three commonly found variants, V1 (K93R), V2 (E14D/V92L) and V3 (K93R/N122K), through molecular and phenotypic approaches. We demonstrated that cells containing V1 achieved higher colony formation and showed greater cell migration ability when compared to other variants, but no difference in cell immortalization ability was observed. At the molecular level, the three variants formed complexes with E6-associated protein (E6AP) and p53 as efficiently as the prototype. They degraded p53 and PSD95/Dlg/ZO-1(PDZ) proteins, including MAGI-1c and Dlg, to a similar extent. They also exhibited a similar subcellular localization, and shared a half-life of approximately 45 min. Our findings provide a clearer picture of HPV-52 E6 variant oncogenicity, which is important for further studies aiming to understand the unusually high prevalence of HPV-52 among cervical cancers in East Asia.


Assuntos
Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/metabolismo , Infecções por Papillomavirus/virologia , Linhagem Celular , Variação Genética , Humanos , Papillomaviridae/genética , Estabilidade Proteica , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...