Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 43(5): 1161-1172, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38415890

RESUMO

Hydraulic fracturing (HF) is commonly used to enhance onshore recovery of oil and gas during production. This process involves the use of a variety of chemicals to support the physical extraction of oil and gas, maintain appropriate conditions downhole (e.g., redox conditions, pH), and limit microbial growth. The diversity of chemicals used in HF presents a significant challenge for risk assessment. The objective of the present study is to establish a transparent, reproducible procedure for estimating 5th percentile acute aquatic hazard concentrations (e.g., acute hazard concentration 5th percentiles [HC5s]) for these substances and validating against existing toxicity data. A simplified, grouped target site model (gTSM) was developed using a database (n = 1696) of diverse compounds with known mode of action (MoA) information. Statistical significance testing was employed to reduce model complexity by combining 11 discrete MoAs into three general hazard groups. The new model was trained and validated using an 80:20 allocation of the experimental database. The gTSM predicts toxicity using a combination of target site water partition coefficients and hazard group-based critical target site concentrations. Model performance was comparable to the original TSM using 40% fewer parameters. Model predictions were judged to be sufficiently reliable and the gTSM was further used to prioritize a subset of reported Permian Basin HF substances for risk evaluation. The gTSM was applied to predict hazard groups, species acute toxicity, and acute HC5s for 186 organic compounds (neutral and ionic). Toxicity predictions and acute HC5 estimates were validated against measured acute toxicity data compiled for HF substances. This case study supports the gTSM as an efficient, cost-effective computational tool for rapid aquatic hazard assessment of diverse organic chemicals. Environ Toxicol Chem 2024;43:1161-1172. © 2024 ExxonMobil Petroleum and Chemical BV. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Fraturamento Hidráulico , Compostos Orgânicos , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Medição de Risco , Compostos Orgânicos/toxicidade , Animais , Simulação por Computador , Monitoramento Ambiental/métodos
2.
Environ Toxicol Chem ; 38(1): 222-239, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30255636

RESUMO

A database of 2049 chemicals with 47 associated modes of action (MoA) was compiled from the literature. The database includes alkanes, polycyclic aromatic hydrocarbons, pesticides, inorganic, and polar compounds. Brief descriptions of some critical MoA classification groups are provided. The MoA from the 14 sources were assigned using a variety of reliable experimental and modeling techniques. Toxicity information, chemical parameters, and solubility limits were combined with the MoA label information to create the data set used for model development. The model database was used to generate linear free energy relationships for each specific MoA using multilinear regression analysis. The model uses chemical-specific Abraham solute parameters estimated from AbSolv to determine MoA-specific solvent parameters. With this procedure, critical target site concentrations are determined for each genus. Statistical analysis showed a wide range in values of the solvent parameters for the significant MoA. Environ Toxicol Chem 2019;38:222-239. © 2018 SETAC.


Assuntos
Organismos Aquáticos/fisiologia , Lipídeos/química , Modelos Teóricos , Testes de Toxicidade Aguda , Animais , Calibragem , Bases de Dados como Assunto , Modelos Lineares , Solventes , Poluentes Químicos da Água/toxicidade
3.
Environ Toxicol Chem ; 38(2): 375-386, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30506854

RESUMO

A database of 1480 chemicals with 47 associated modes of action compiled from the literature encompasses a wide range of chemical classes (alkanes, polycyclic aromatic hydrocarbons, pesticides, and polar compounds) and includes toxicity data for 79 different aquatic genera. The data were split into a calibration group and a validation group (80/20) to apply k-nearest neighbors (k-NN) methodology to predict the toxic mode of action for the compound. Other approaches were tested (support vector machines and linear discriminant analysis) as well as variations in the k-NN technique (distance weighting, feature weighting). Best-prediction results were found with k = 3, in a voting platform with optimized feature weighting. Using the predicted mode of action, the appropriate polyparameter target site model for that mode of action is applied to calculate the 50% lethal concentration (LC50). Predicted LC50s for the validation database resulted in a root-mean squared error (RMSE) of 0.752. This can be compared to an RMSE of 0.655 for the same validation set using the reference mode of action labels. The complete database resulted in an RMSE of 0.793 for reference mode of action labels. This confirms that the classification model has sufficient accuracy for predicting the mode of action and for determining toxicity using the target site model. Environ Toxicol Chem 2019;38:375-386. © 2018 SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Substâncias Perigosas/classificação , Substâncias Perigosas/toxicidade , Modelos Teóricos , Poluentes Químicos da Água/classificação , Poluentes Químicos da Água/toxicidade , Animais , Análise por Conglomerados , Dose Letal Mediana , Valor Preditivo dos Testes , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...