Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vet Med Sci ; 84(10): 1377-1384, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36031361

RESUMO

The carbapenemase-producing Acinetobacter baumannii is an important opportunistic bacterium and frequently causes hospital-acquired infections in humans. It also has increasingly been reported in veterinary medicine. This study illustrates multiple clones of carbapenemase-producing A. baumannii disseminating and causing diseases in dogs and cats in Thailand. Between 2016 and 2020, 44 A. baumannii and two A. pittii isolates exhibiting imipenem resistance (MIC≥16 µg/mL) from diagnostic samples were characterized by Pasteur multilocus sequence typing (MLST), sequence grouping (SG), repetitive extragenic palindromic element (rep)-PCR fingerprint analysis and antimicrobial resistance (AMR) profiling. All isolates contained blaOXA-23 in the Tn2006 family, and A. baumannii showed the sequence type (ST) 16 (14/44), ST149 (12/44), ST25 (6/44), ST2 (4/44), ST1581 (3/44), ST23 (2/44), ST1575 (1/44) and ST1576 (1/44). DNA fingerprint analysis and SG illustrated clonal relationships in the STs and its single locus variants, and AMR gene profiles, including tetracycline and aminoglycoside resistance genes, showed minor variations in the clones. The findings suggest that blaOXA-23 has been spread in multiple clones of A. baumannii and A. pittii from canine and feline hosts. With the collection of multiple AMR genes and intrinsic resistance, antimicrobial options are limited for treatment, and pets can be a potential reservoir of extensively drug-resistant, carbapenemase-producing A. baumannii in the community. Epidemiological tracking by passive and active surveillance in animals, veterinary personnel and hospital environment and preventive measurements should be promoted to decrease the risk of infection and transmission to humans.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Doenças do Gato , Doenças do Cão , Infecções por Acinetobacter/veterinária , Acinetobacter baumannii/genética , Aminoglicosídeos , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Gatos , Cães , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Imipenem , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Testes de Sensibilidade Microbiana/veterinária , Tipagem de Sequências Multilocus/veterinária , Tetraciclinas , beta-Lactamases/genética
2.
Antibiotics (Basel) ; 10(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34827312

RESUMO

Resistance to extended-spectrum cephalosporins (ESC) and carbapenems in Escherichia coli (E. coli), increasingly identified in small animals, indicates a crisis of an antimicrobial resistance situation in veterinary medicine and public health. This study aimed to characterise the genetic features of ESC-resistant E. coli isolated from cats and dogs with urinary tract infections in Thailand. Of 72 ESC-resistant E. coli isolated from diagnostic samples (2016-2018), blaCTX-M including group 1 (CTX-M-55, -15 and -173) and group 9 (CTX-M-14, -27, -65 and -90) variants were detected in 47 isolates (65.28%) using PCR and DNA sequencing. Additional antimicrobial resistance genes, including plasmid-mediated AmpC (CIT and DHA), blaNDM-5, mcr-3, mph(A) and aac(6')-Ib-cr, were detected in these isolates. Using a broth microdilution assay, all the strains exhibited multidrug-resistant phenotypes. The phylogroups were F (36.11%), A (20.83%), B1 (19.44%), B2 (19.44%) and D (4.17%), with several virulence genes, plasmid replicons and an integrase gene. The DNA fingerprinting using a repetitive extragenic palindromic sequence-PCR presented clonal relationships within phylogroups. Multiple human-associated, high-risk ExPEC clones associated with multidrug resistance, including sequence type (ST) 38, ST131, ST224, ST167, ST354, ST410, ST617 and ST648, were identified, suggesting clonal dissemination. Dogs and cats are a potential reservoir of ESC-resistant E. coli and significant antimicrobial resistance genes.

3.
Antibiotics (Basel) ; 10(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671008

RESUMO

The aim of this study was to present molecular and antimicrobial resistance characteristics of methicillin-resistant Staphylococcus aureus (MRSA) clonal complex (CC) 398 isolated from diseased dogs and cats in Thailand. A total of 20 MRSA isolates of 134 Staphylococcus aureus isolated from canine and feline clinical samples during 2017-2020 were CC398, consisting of sequence type (ST) 398 (18 isolates), ST5926 (1 isolate), and ST6563 (1 isolate) by multilocus sequence typing. spa t034 and staphylococcal cassette chromosome mec (SCCmec) V were predominantly associated with ST398. Intraclonal differentiation was present by additional spa (t1255, t4653), non-detectable spa, composite SCCmec with a hybrid of ccrA1B1+ccrC and class A mec complex, and DNA fingerprints by pulsed-field gel electrophoresis. The isolates essentially carried antimicrobial resistance genes, mediating multiple resistance to ß-lactams (mecA, blaZ), tetracyclines [tet(M)], aminoglycosides [aac(6')-Ie-aph(2')-Ia], and trimethoprim (dfr). Livestock-associated MRSA ST398 resistance genes including lnu(B), lsa(E), spw, fexA, and tet(L) were heterogeneously found and lost in subpopulation, with the absence or presence of additional erm(A), erm(B), and ileS2 genes that corresponded to resistance phenotypes. As only a single CC398 was detected with the presence of intraclonal variation, CC398 seems to be the successful MRSA clone colonizing in small animals as a pet-associated MRSA in Thailand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...